14th annual Congress of the
EUROPEAN COLLEGE OF SPORT SCIENCE
Oslo/Norway, June 24-27, 2009
BOOK OF ABSTRACTS

Edited by:
Loland, S., Bø, K., Fasting, K., Hallén, J., Ommundsen, Y., Roberts, G., Tsolakis, E.

Hosted by:
The Norwegian School of Sport Sciences

Organisation

Congress President
- Sigmund Loland, NO

ECSS Executive Board
- President: Albert Gollhofer, DE
- President-Elect: Hans Hoppeler, CH
- Past President: Erich Müller, AU
- General Secretary: Sigmund Loland, NO
- Treasurer: Romain Meuseen BE

ECSS Scientific Board
- Chair: Anton Wagenmakers, UK
- Peter Bartsch, DE
- Jan Cabri, PT
- Flemming Dela, DK
- Paavo Komi, FI
- Gerhard Pfister, DK
- Tom Reilly, UK

ECSS Scientific Committee
- Natalia Balague, SP
- Daniela Caporossi, IT
- Hans-Hermann Dickhuth, DE
- Nenad Dikic, SRB
- Joan Duda, UK
- Michael Grey, DK
- Daniel Green, UK
- Steve Hamridge, UK
- Werner Hafsten, BE
- Luc van Loon, NL
- Mike McNamee, UK
- Caroline Nicol, FR
- Hermann Schwameder, DE
- Gisela Sjøgaard, DK
- Mark Williams, UK

Local Scientific Committee
- Chair: Sigmund Loland, NO
- Kari Be, NO
- Kari Fasting, NO
- Jostein Hallén, NO
- Yngvar Ommundsen, NO
- Glyn C. Roberts, NO
- Secretary: Karen Christensen, NO

Additional reviewers
- Tor Einar Andersen, NO
- Sigmund A. Andersen, NO
- Jens Boysen-Møller, NO
- Gunn Engelsrud, NO
- Ernst Albin Hansen, NO
- Jørgen Jensen, NO
- Tron Krosshauge, NO
- Grethe Myklebust, NO
- Lars Tore Ronglan, NO
- Ola Rønsen, NO
- Truls Raastad, NO
- Berit Skirstad, NO
- Jorunn Sundgot-Borgen, NO
- Mari Sørensen, NO

Organizing Committee

- Chair: Karen Christensen, NO
- Sigmund Loland, NO
- Gro Sylje, NO
- Øivind Lie, NO
- Elias Tsolakidis, GR
- Thomas Delaveaux, DE
- Tobias Vogt, DE
EFFECT OF EXTREME ENVIRONMENTAL CONDITIONS ON PHYSICAL ACTIVITY PATTERNS OF SOCCER PLAYERS

OZGUNEN, K., KURDAK, S., CIGDEM, Z., KORKMAZ, S., YAZICI, Z., ERSOZ, G., BINNET, M.

CUKUROVA UNIVERSITY, TURKEY; ANKARA UNIVERSITY, TURKEY

Soccer teams may sometimes be obliged to play under difficult environmental conditions. Activity patterns of players of different standards have been analyzed by time-motion analysis, but there is dearth of knowledge how the players' match performance is affected by environmental conditions.

Purpose: This study aimed to evaluate changes in the activity patterns during a soccer match played in different conditions of environmental temperature and humidity.

Methods: Non-acclimatized soccer players n=10, the goal keeper was excluded, 20 ± 2 y, VO2max=63 ± 7 ml/min/kg played 2 matches in different environmental conditions. Players ingested telemetric core temperature (Tc) sensors prior to each match and wore a heart rate (HR) and global positioning system (GPS) monitor during the match. A computer based analysis program was used to evaluate heart rate and speed changes during the match. The following locomotor categories were used: standing (0 – 0.4 km/h), walking (0.5 – 7.5 km/h), jogging (7.6 – 14.5 km/h), low – moderate running (14.6 – 19.5 km/h), high speed running (19.6 – 25.5 km/h) and sprinting (> 25.6 km/h). These were later divided into five categories: (1) standing; (2) walking; (3) running, encompassing jogging and low – moderate intensity running and (4) high intensity running, consisting of high speed running and sprinting.

Results: The average ambient temperature for the June 2007 match was 34 ± 1 °C with a relative humidity of 38 ± 2 % . In the July 2007 match, ambient temperature was recorded as 36 ± 0 °C with a relative humidity of 61 ± 1 %. Peak Tc values recorded for June and July matches were 39.1 ± 0.4 °C and 39.6 ± 0.5 °C respectively. Total distance covered during June and July matches was 8 ± 0.6 and 8.1 ± 0.7 km respectively. The total distance covered in the first and second halves were: 4.4 ± 0.4 and 4.2 ± 0.3 km for June and 4.3 ± 0.5 and 3.8 ± 0.4 km for July matches. The difference between the halves of the July match was significant (TC > 0.05).

Conclusion: In soccer matches played in high environmental temperature and humidity, the physical performance of the players may decrease due to high thermal stress. In the present study, the players' increased body core temperature at half time was followed by a decrease in total distance covered in the second half of the game. This may point to a centrally-driven performance reduction.

COLDING INTERVENTION AND SOCCER UNDER EXTREME HEAT CONDITIONS

1. CUKUROVA UNIVERSITY, TURKEY; 2. LOUGHBOROUGH UNIVERSITY, UNITED KINGDOM; 3. ANKARA UNIVERSITY, TURKEY; 4. FIFA FWARC, SWITZERLAND

Whole body pre-cooling with fluid ingestion had been discussed as one of the main interventions to improve athletic performance in extreme heat conditions. Extensive research had been performed to evaluate the effect of precooling on athletic performance and body core temperature, but the influence on a soccer match had not been investigated. Purpose: The aim of this study was to investigate the effect of cooling intervention on athletic performance and body core temperature during a competitive soccer game. Methods: 11 soccer players aged 21 ± 2 y (mean ± SD) with VO2max of 59.8 ± 5.0 ml/kg/min volunteered to play two matches without – C and with cooling intervention – CI for this study. The ambient temperature and humidity were 34.3 ± 0.6 oC and 64 ± 2 % for the first and 34.0 ± 0.58 °C and 62 ± 0 % for the second game (CI) respectively. Players had opportunity to consume ad libitum plain water during the CI, plain water or sports drink by choice during CI study. A cooling tent and icy water filled buckets placed beside the soccer field were used for cooling intervention. Match activity was recorded by a global positioning system. Thermosensor pills were used for body core temperature (Tc) measurements. Blood samples were withdrawn from an antecubital vein 5 hours before and immediately after the game to determine hematocrit (Hc), hematocrit content (Hb), calculate plasma volume loss, and changes of serum electrolytes. ANOVA and paired sample t-test was used to evaluate the level of significance, and p values < 0.05 were accepted as significant. Results: The Tc value recorded during the last ten minutes of the first half and the difference between C and CI groups was not significant (39.5 ± 0.5 vs 39.3 ± 0.5oC respectively). Total liquid consumption was measured as 1473 ± 422 ml for C and 1230 ± 449 ml for CI group (926 ± 604 ml plain water, and 304 ± 240 ml sports drink). Post-match dehydration % was similar for both C (2.49 ± 0.67) and CI match (2.54 ± 1.21). Pre- and post-match Hc (48.9 ± 3.3 vs 49.2 ± 3.3 %) and Hb (16 ± 14 vs 16 ± 13 g/L) were used to calculate % plasma volume change (PVC). The plasma volume loss for the CI group was calculated as 51 ± 5.6 % with pre- and post-match Htc (46 ± 2.2 vs 46 ± 2.1) and Hb (15 ± 20 vs 15 ± 20) content. Plasma volume loss for C and CI groups were not significant. Pre- and post-match difference of serum Na (145 ± 2.5 vs 144 ± 2.5 mmol/L), and K (5.4 ± 0.4 vs 5.4 ± 0.4 mmol/L) for C and CI groups were not significant. CI did not change distance covered during the game significantly (1428 ± 598 meters vs 1315 ± 549 meters for C and CI groups respectively). Conclusion: Cooling intervention was not sufficient to reduce Tc and improve match performance significantly. Slight reduction of Tc that observed with whole body cooling may be important for prevention of heat related problems that occur in extreme heat conditions.

PLAYING FOOTBALL <SOCCEER> UNDER EXTREME HEAT CONDITIONS – EFFECT OF ACCLIMATISATION

ERSOZ, G., KURDAN, S.S., OZGUNEN, K.T., MAUGHAN, R.J., ZEREN, Ç., KORKMAZ, S., YAZICI, Z., BINNET, M.S.

1. ANKARA UNIVERSITY; 2. CUKUROVA UNIVERSITY; 3. LOUGHBOROUGH UNIVERSITY

Exercise intensity is an important factor to induce thermal strain, and soccer is a challenge for the players who have to play under extreme heat conditions. Acclimation is an important intervention to improve thermal tolerance and endurance capacity.

Purpose: We aimed to evaluate effect of acclimation on sportive performance during a game played under extreme heat conditions.

Methods: 11 male acclimated soccer players aged 23 & 6167; 2 y, V=6167;02 max 61.8 & 6167;11 ml/min/1 kg-1) and 10 unacclimated soccer players aged 23 & 6167; 2 y, V&6167;02 max 61.8 & 6167;11 ml/min/1 kg-1) were randomized into an indoor laboratory and outdoor natural environment.