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ABSTRACT 
 

PhD THESIS 
 

AXISYMMETRIC BENDING AND FLEXURAL VIBRATION ANALYSIS 
OF HETEROGENEOUS (FGM) CIRCULAR PLATES 

 
Ahmad Reshad NOORI 

 
CUKUROVA UNIVERSITY  

INSTITUTE OF NATURAL AND APPLIED SCIENCES 
DEPARTMENT OF CIVIL ENGINEERING 

 
 Supervisor : Prof. Dr. Beytullah TEMEL  
   Year: 2019, Pages: 162 
 Jury : Prof. Dr. Beytullah TEMEL 
  : Prof. Dr. Naki TÜTÜNCÜ 
  : Prof. Dr. Hüseyin R. YERLİ 
  : Prof. Dr. Faruk Fırat ÇALIM 
  : Asst. Prof. Dr. Mehmet Fatih ŞAHAN 
 

In this research, an effective numerical approach is applied to the 
axisymmetric bending and flexural vibration analysis of two-directional 
functionally graded (2D-FG) thick circular and annular plates with variable 
thickness. The material properties are assumed to vary continuously both in 
thickness and radial directions. The effect of shear deformation is considered in the 
formulation. The governing equations are converted to a set of ordinary differential 
equations (ODEs). Obtained canonical equations are solved numerically by the 
Complementary Functions Method (CFM). For the dynamic analysis, the CFM is 
combined with the Laplace transform. A powerful inverse algorithm is applied to 
retransfer the results from the Laplace space to the time domain. The damping 
model of Kelvin is used in the damped forced vibration analysis. The main purpose 
is to infuse this method to the bending and dynamic analysis of a wide range of 
solid circular or annular plates, with linear or non-linear thickness profiles, radially 
Functionally Graded (FG), FG in the thickness direction or 2D-FG, without any 
restrictions. The influence of material variation exponents and thickness profiles on 
the considered problems are investigated. Several examples are presented and 
results are verified with those obtained by finite element method and available 
published literature. Excellent agreement is observed.  
 

Key Words:  Bending, functionally graded materials, circular plates, annular plates, 
vibration, complementary functions method, Laplace transforms 
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ÖZ 
 

DOKTORA TEZİ 
 

HETEROJEN (FDM) DAİRESEL PLAKLARIN EKSENEL SİMETRİK 
EĞİLMESİ VE TİTREŞİM ANALİZİ

 
Ahmad Reshad NOORI 

 
ÇUKUROVA ÜNİVERSİTESİ 
FEN BİLİMLERİ ENSTİTÜSÜ 

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI 
 

 Danışman : Prof. Dr. Beytullah TEMEL 
   Yıl: 2019, Sayfa: 162 
        Jüri : Prof. Dr. Beytullah TEMEL 
   : Prof. Dr. Naki TÜTÜNCÜ 
  : Prof. Dr. Hüseyin R. YERLİ 
  : Prof. Dr. Faruk Fırat ÇALIM 
  : Dr. Öğr. Üyesi Mehmet Fatih ŞAHAN 
 

Bu araştırmada, çift yönlü fonksiyonel derecelenmiş ve değişken kalınlıklı 
kalın dairesel ve halka plakların, eğilme ve dinamik analizi için etkin bir sayısal 
yaklaşım uygulanmıştır. Malzeme özelliklerinin hem radyal yönde hem de kalınlık 
boyunca sürekli olarak değiştiği kabul edilmiştir. Formülasyonda, kayma 
deformasyonu etkileri göz önünde bulundurulmuştur. Plakların davranışını idare 
eden denklemler kanonik halde elde edilmiştir. Elde edilen kanonik denklemer 
Tamamlayıcı Fonksiyonlar Yöntemi (TFY) ile sayısal olarak çözülmüştür. 
Dinamik analiz için TFY, Laplace dönüşümü ile birlike kullanılmıştır. Laplace 
uzayında elde edilen çözümler, etkin bir sayısal ters Laplace tekniği ile zaman 
uzayına dönüştürülmüştür. Sönümlü zorlanmış titreşim durumunda Kelvin tipi 
sönüm modeli kullanılmıştır. Bu çalışmanın temel amacı kalınlık boyunca FD, 
radyel fonksiyonel derecelenmiş (FD) , veya çift yönlü FD, lineer veya nonlineer 
kalınlık profili olan çeşitli dairesel ve halka plakların eğilme ve dinamik 
analizilerine TFY'i uygulamaktır. Malzeme indekslerinin ve kalınlık profillerinin, 
söz konusu yapıların davranışı üzerindeki etkileri araştırılmıştır. Bu çalışmanın 
sonuçları literatürde bulunan ve sonlu elemanlar yöntemi kullanılarak hesaplanan 
sonuçlar ile karşılaştırıp, doğruluğu çeşitli örnekler üzerinde gösterilmiştir. 
 
Anahtar Kelimeler:  Eğilme, fonskiyonel derecelendirilmiş malzemeler, dairesel 

plaklar, halka plaklar, titreşim, Tamamlayıcı Fonksiyonlar 
Yöntemi, Laplace dönüşümü 
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GENİŞLETİLMİŞ ÖZET 

 

Çift yönlü fonksiyonel derecelenmiş malzemeden (FDM) yapılmış kalın 

dairesel ve halka plakların eğilme, serbest titreşim ve zorlanmış titreşim 

davranışlarının analitik çözümü, yalnızca basit malzeme fonksiyonları ve basit 

kalınlık profilleri için elde edilebilmektedir. Çift yönlü FDM'ler genellikle, 

içlerinden birinin veya ikisinin seramik, diğerlerinin ise metal alaşımlı fazları 

olduğu üç veya dört farklı malzeme fazının düzgün değişimi ile yapılan 

malzemelerdir. Üretim yöntemlerinde yeni gelişmeler ile birlikte bilgisayar destekli 

üretim süreçleri kullanılarak çift yönlü FDM’leri üretmek mümkündür.  

Analitik çözümlerinin elde edilmesi mümkün olmayan, değişken kalınklı 

FDM dairesel ve halka plakların, eğilme ve titreşim analizleri için, Tamamlayıcı 

Fonksiyonler Yöntemi (TFY) gibi etkili ve güçlü sayısal yöntemlere ihtiyaç vardır. 

Nümerik analizde, TFY ile sınır değer problemi başlangıç değer problemine 

indirgenmektedir. Bu metodun bilgisayarda programlanması kolay olup, oldukça 

etkili bir çözüm yöntemidir. Bu çalışmada ele alınan plaklar, eksenel dönel 

simetrik olarak kabul edilmiştir. Bu araştırmada, plak kalınlığının üstel olarak 

değiştiği varsayılmıştır. FDM’lerin eksponansiyel ve üstel şekilde değiştiği kabul 

edilmiştir.  

İlk olarak, ele alınan problemin eğilme davranışını idare eden denklemler 

birinci mertebeden kayma deformasyon teorisine dayanılarak minimum toplam 

potansiyel enerji prensibi ile elde edilmiş ve bu denklemler adi differansiyel 

denklem takımına dönüştürülmüştür. Elde edilen kanonik denklemler, TFY ile 

sayısal olarak çözülmüştür. TFY’ye dayalı başlangıç değer probleminin çözümleri 

için 5. mertebe Runge-Kutta (RK5) algoritması kullanılmıştır. Öncellike TFY’nin 

doğruluğunu ve etkinliğini göstermek için iki adet karşılaştırma çalışması 

yapılmıştır. İlk karşılaştırmada FDM modelinin eksponansiyel olarak değiştiği 

kabul edilmiş ve sonuçlar literatürde mevcut sonuçlar ile karşılaştırılmış. 

Karşılaştırmada plak kalınlığının sabit olduğu kabul edilmiştir. Sonuçların birbiri 
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ile örtüştüğü görülmüştür. İkinci karşılaştırmada ise malzemenin üstel olarak 

değiştiği varsayılmıştır. Elde edilen sonuçlar sonlu elemanlar metodunun (ANSYS) 

sonuçları ile karşılaştırılmıştır. ANSYS’te model oluşturulurken plak kalınlık 

yönünde 40 ve radyal yönde 200 tabakaya bölünmüştür. Sonlu elemanlar paket 

programında her tabakaya farklı malzeme özelliği tanımlayarak toplamda 8000 

adet malzeme tanımlanmıştır. Bu durumda da sonuçlar karşılaştırılıp, bu tezde 

sunulan yöntemin doğruluğu ve üstünlüğü gösterilmiştir. Ayrıca malzeme 

indislerinin, kalınlık profillerinin ve sınır şartlarının dairesel ve halka plak eğilme 

davranışı üzerindeki etkileri detaylı bir şekilde incelenmiştir.  

İkinci problem ise çift yönlü FDM dairesel ve halka plakların serbest 

titreşim davranışının incelenmesidir. Çeşitli sınır şartlarına sahip kalın dairesel 

plaklar için serbest titreşim karakteristik değerleri elde edilmiş ve elde edilen 

sonuçların doğruluğu, literatür sonuçları ile karşılaştırılarak gösterilmiştir. Halka 

plaklar için literatürde mevcut çalışmalar sınırlı olduğundan dolayı, bu çalışmanın 

sonuçları ANSYS paket programından elde edilen sonuçlar ile karşılaştırılmış ve 

doğruluğu teyit edilmiştir. Eğilme durumunda olduğu gibi, serbest titreşim 

analizinde de ANSYS ile tutarlı sonuçlar elde edebilmek içi plak; özellikle kalınlık 

doğrulutusunda birçok katmana bölünmelidir. Plakların serbest titreşim davranışı 

için de çeşitli parametrik çalışmalar yapılmıştır. Malzeme indislerinin, geometrik 

sabitlerinin ve çeşitli mesnetlenme durumularının, yapının doğal titreşim 

frekansları üzerindeki etkileri detaylı bir şekilde incelenmiştir. Bu tezde sunulan 

metod ile doğal titreşim frekanslarını elde etmek için mod şekillerinin bulunmasına 

ihtiyaç duyulmamaktadır.  

Üçüncü olarak ele alınan problemde ise söz konusu plakların sönümsüz ve 

sönümlü zorlanmış titreşimlerin plak davranışlarına etkileri araştırılmıştır. Çift 

yönlü fonksiyonel derecelenmiş dairesel plakların çeşitli dinamik yükler altında 

zorlanmış titreşim davranışı Laplace uzayında TFY ile sayısal olarak incelenmiştir. 

TFY’ye dayalı başlangıç değer probleminin Laplace uzayındaki çözümleri için 5. 

mertebe Runge-Kutta (RK5) algoritması kullanılmış ve bu amaçla Fortran dilinde 
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bir bilgisayar programı hazırlanmıştır. Laplace uzayında elde edilen çözümler, 

etkin bir sayısal ters Laplace dönüşüm tekniği ile zaman uzayına dönüştürülmüştür. 

Mevcut yöntemin sonuçları, sonlu eleman paket programı olan ANSYS’ın 

sonuçları ile karşılaştırılmıştır. Yapılan karşılaştırmalar neticesinde önerilen metod 

ile kaba zaman artım miktarları kullanılarak elde edilen sonuçların, ANSYS 

programı yardımıyla sık zaman artım miktarları kullanılarak elde edilen değerlerle 

örtüştüğü görülmüştür. Sönümlü titreşim durumunda Kelvin tipi sönüm modeli 

kullanılmıştır. Çeşitli malzeme indisleri ve kalınlık profillerinin, FDM dairsel ve 

halka plakların zorlanmış titreşim davranışlarına etikisini incelemek için detaylı 

parametrik çalışmalar yapılmıştır. Ayrıca, periyodik yüklerin, ele alınan plakların 

davanışına etkisi araştırılmıştır. Periyodik yüklerin frekansı yapının doğal titreşim 

frekanslarına yakın olduğu zaman vuruş olayı meydana gelmektedir.  
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1. INTRODUCTION 

 

Circular and annular FG plates have been widely used as structural 

members in many important engineering applications. During their service life, 

those important structures are often subjected to various static and dynamic 

loadings.  For this reason, axisymmetric bending analysis of the FG circular and 

annular plates have been very attractive during the last decades.  

Recent developments and improvements in the computer-aided 

manufacturing processes make it possible to fabricate FGMs in two directions. 2D 

FGMs are made of continues and smooth gradation of three or four different 

material phases. Volume fractions of these constituent materials vary smoothly in a 

predetermined composition profile. Those advanced materials have a wide range of 

applications in engineering fields. Furthermore, there are just a few studies on the 

bending and dynamic analysis of 2D-FG circular and annular plates. In this thesis, 

two types of material variation are considered which their distributions are in 

exponential and power law form.  

Closed-form solution of the static and dynamic response of 2D-FG circular 

and annular plates are only available for a number of problems with simple 

boundary conditions and uniform thickness. In order to carry out the axisymmetric 

bending, free vibration and forced vibration of 2D-FG thick circular and annular 

plates with variable thickness, efficient and powerful numerical methods such as 

the CFM are needed. In this study, the obtained canonical equations are solved 

numerically by the CFM.  

The main objective of this research is to suggest a powerful and efficient 

approach for the axisymmetric bending and dynamic response of radially FG, FG 

through the thickness and 2D-FG circular and annular plates. In this thesis, the 

modulus of elasticity and mass density of the plate is considered to vary both in 

thickness and radial directions. The Poisson’s ratio is assumed to be constant. The 

governing equations of the problem are obtained based on the principle of 
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minimum total potential energy and Hamilton’s principle. The axisymmetric 

bending, free vibration and forced vibration response of the circular and annular 

plates for several volume fraction exponents, thickness to radius ratios, boundary 

conditions, and thickness function are carried out and compared with available 

literature and the FEM. 

Free and forced vibration behaviors of the considered structures are 

examined in conjunction with FSDT the CFM in the Laplace space. This method is 

attempted to obtain accurate fundamental frequencies and the transient behavior of 

the 2D-FG plates. The time-dependent governing equations of the dynamic 

response of the structure have first been obtained. Then, the canonical equations 

are transferred to the Laplace space and the CFM has been employed to solve those 

canonical form for a set of Laplace parameters. Butcher's RK5 method is applied to 

numerical solutions. To retransform the obtained results to the time-space an 

accurate inverse Laplace transform method has been used. To verify the proposed 

scheme, results of fundamental frequencies, displacements, and internal forces are 

compared with available literature and ANSYS. In this thesis, the effects of shear 

deformation are taken into account.  Furthermore, the Kelvin damping model is 

used in the viscoelastic material case. Finally, the effects of material gradient index 

and geometric constants are studied. Tabular results of free vibration and graphical 

results of the forced vibration are given and conclusions are presented.  
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2. PREVIOUS STUDIES 

 

2.1. Axisymmetric Bending of Functionally Graded Circular and Annular 

Plates  

Circular and annular FG plates are important structural members in many 

engineering applications. Axisymmetric bending analysis of the FG circular and 

annular plates have been very attractive during the last decades. 

Alipour (2016) presented an analytical approach for the bending and stress 

analysis of FG sandwich circular plates. Mousavi and Tahani (2012) suggested an 

exact solution method for bending analysis of radially FG sector plates. 

Axisymmetric bending of FG thick circular plates was studied by Sahraee and 

Saidi (2009). Saidi et al. (2009) used unconstrained TSDT to examine the 

axisymmetric bending of FG thick circular plates. They used an analytical method 

in their paper. Reddy et al. ( 1999) examined the axisymmetric bending of FG 

circular and annular plates by FSDT. They also developed the exact relationship 

between the bending analysis for classical plate theory (CLPT) and FSDT for FG 

circular plates.  

Wang et al. (2011) used linear three dimensional theory to investigate the 

axisymmetric bending of FG circular magneto-electro-elastic plates subjected to 

arbitrarily distributed loads in radial direction. They compared their results with 

FEM.  Bayat et al. (2009) presented theoretical formulation for the bending 

analysis of radially FG rotating disks based on the FSDT. They considered both 

body and bending loads in the analysis. They showed that the transverse shear 

resultants in FG disks are greater than in homogenous disks.  The bending analysis 

of FG annular sector plates was studied by Fereidoon et al. (2012) with the aid of 

Kirchhoff plate theory (CLPT) and the extended Kantorovich method. They 

presented a semi analytical solution method for flexural response of FG sector 

plates with arbitrarily boundary conditions and loadings. Bending analysis of FG 
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thick circular sectorial plates was investigated by Sahraee (2009) using the 

Levinson plate theory (LPT) based on FSDT. They demonstrated that LPT solution 

for the deflection of the FG sectorial plates is smaller than those of homogenous 

ones. Closed form solution of axisymmetric bending of circular and annular 

isotropic plates with variable thickness was derived by Vivio and Vullo (2010). Li 

et al. (2008b) studied the problem of FG circular plates subjected to axisymmetric 

loads by the stress functions method for several cases of boundary conditions and 

material gradient indices. Bending analysis of thick FG fully clamped sector plates 

subjected to distributed load was presented by Aghdam et al. (2012). They 

suggested an iterative procedure based on the extended Kantorovich method and 

FSDT.  Li et al. (2008a) developed exact solution of axisymmetric bending of 

uniformly loaded FGM annular plates. They obtained explicit forms of the 

deflection functions. They showed the effects of material inhomogeneity on the 

elastic deformations and stresses. Sayar (1970) studied the static analysis of 

homogeneous shell and plates. 

Ma and Wang (2004) employed the TSDT to examine the axisymmetric 

bending and buckling of FG circular plates. They discussed the relationship 

between the bending and buckling of FG plates and the effect of material gradient 

indices and shear deformation on the axisymmetric bending problem. Rad (2012a) 

used three-dimensional elasticity theory to study the static response of FG annular 

and circular plates under axisymmetric transverse loads resting on an elastic 

foundation. They demonstrated that neutral surface of FG plates depends on the 

variation of the elasticity modulus and it is not at the mid-surface.  Rad et al. 

(2010) used a semi-analytical approach of state space method - differential 

quadrature method (SSM-DQM) to carry out the axisymmetric bending of FG 

circular and annular plates resting on Winkler-Pasternak elastic foundation. They 

considered several boundary conditions.  The direct displacement method was 

applied by Wang et al. (2016b) to examine the axisymmetric bending of FG plates 

subjected to arbitrary loads. They introduced a semi-analytical method to derive the 
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solution for bending problem of FG plates with arbitrary variation of materials in 

the thickness direction.  

Nie and Zhong (2007a) investigated the axisymmetric bending of bi-

directional FG circular plates. They applied the SSM-DQM to the three-

dimensional elasticity theory based governing equations. They showed that bi-

directional FG plates demonstrate a better performance than one-directional FG 

and isotropic plates. Rad and Alibeigloo (2013) used DQM to study the influence 

of two parameter elastic foundation on the axisymmetric bending of two-

directional FG circular and annular plates. They demonstrated that the 

displacement and stresses have a non-linear variation through the thickness of the 

plate. Based on three-dimensional elasticity theory and semi-analytical approach 

the bending response of two-directional FG circular plates resting on an elastic 

foundation was studied by Rad (2012b).  Zafarmand and Kadkhodayan (2015) 

examined the static and dynamic behavior of two-dimensional FG thick sector 

based on Hamilton’s principle with the aid of Rayleigh – Ritz method.  

 

2.2. Dynamic Analysis of Functionally Graded Circular and Annular Plates 

Circular and annular plates are important structural members in the 

architectural and industrial designing. Functionally graded materials (FGMs) have 

a continuous variation of mechanical properties in one or more directions. Those 

advanced materials have a wide range of applications in engineering fields. 

Therefore, the free vibration and transient behavior of FG circular and annular 

plates have been examined and investigated by many researchers.  

The free vibration response of thick annular plates was investigated by Irie 

et al. (1982) based on the Mindlin plate theory. They obtained natural frequencies 

of uniform thick annular plates for several boundary conditions. The vibration 

analysis of Mindlin plates was carried out by Liew et al. (1998).  Liu and Lee 

(2000) used finite elements to examine 3D vibration response of thick annular and 

circular plates. The natural frequencies of solid circular plates were investigated by 
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Wu et al. (2002) with the aid of the generalized differential quadrature rule 

(GDQR). They examined the impact of stepped thickness and boundary conditions 

on the free vibration response of circular plates. The free vibration and transient 

response of a thin circular FG plate were examined by Allahverdizadeh et al. 

(2008) . In their study, they studied the effects of variation of Poisson’s ratio and 

volume fraction index on the dynamic analysis of circular FG plates. Wirowski 

(2009) examined the free vibration of FG thin circular plates.  

Efraim and Eisenberger (2007) obtained the exact free vibration 

characteristics of isotropic and FG annular plates of variable thickness. They used 

the exact element method and the dynamic stiffness method. Influences of material 

gradient indexes, taper parameters and boundary conditions on the free vibration 

characteristics of FG circular plates of variable thickness were investigated by 

Gupta et al. (2007). Nie and Zhong (2007b) achieved the three dimensional 

dynamic analysis of FG circular plate with the aid of the state space method and 

the one-dimensional differential quadrature method. They used to same method to 

investigate the dynamic analysis of FG annular sectorial plates Nie and Zhong, 

(2008). Dong (2008) applied the Chebyshev–Ritz method to investigated the three-

dimensional free vibration of FG annular plates with different boundary conditions. 

Free axisymmetric vibration of FG circular plates was examined by Wang et al. 

(2009) based on three dimensional theory. Lal and Ahlawat (2017) studied the 

influence of hydrostatic loads on the free axisymmetric vibration of FG thick 

circular plates based on FSDT. 

Ebrahimi and Rastgoo (2008) provided an analytical solution for free 

vibration of a thin annular FG plate with piezoelectric layers based on the 

Kirchhoff plate model. Ebrahimi et al. (2008) carried out the natural frequencies of 

moderately thick circular FG plate integrated with piezoelectric layers based on 

Mindlin plate theory. Ebrahimi and Rastgo (2008) presented an analytical solution 

for free vibration response of thin circular FG plates with two full size surface-

bonded piezoelectric plates. Mirtalaie and Hajabasi (2011) applied the DQM to 
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obtain the natural frequencies of FG thin annular sector plates. The infleunces of 

boundary conditions and variation of Poisson’s ratio on the free vibration response 

of the considered structures were examined. Hosseini-Hashemi et al. (2010) 

presented exact natural frequencies of circular and annular FG plates with different 

kinds of boundary conditions based on FSDT. They introduced potential functions 

and used the method of seperation of variables. Su et al. (2014) suggested a unified 

solution method for the free vibration analysis of FG annular plates with general 

boundary conditions. 

Malekzadeh et al. (2010) examined the free vibration response of FG 

annular plates subjected to the thermal environment based on FSDT. Malekzadeh 

et al. (2011) presented the natural frequencies of FG annular plates in the thermal 

environment by 3D elasticity theory. They showed that the temperature 

dependence of materials has a significant effect on the free vibration characteristics 

of FG plates. The free vibration of the FG annular plates with mixed boundary 

conditions were investigated by Shi and Dong (2012) in the thermal environment. 

They studied the influence of mixed boundaries, material gradient index and 

geometrical characteristics and the free vibration. They used Chebyshev–Ritz 

method in their study. A unified solution approach was presented by Wang et al. 

(2016a) to investigate the vibration analysis FG circular and annular plates based 

on FSDT. Natural frequencies of radially FG circular plates with variable thickness 

were carried out by Sharma et al. (2017) with the Ritz method. 

Tornabene (2009) investigated the dynamic analysis of FG annular plates 

by considering them as a special case of conical shell formulation. Equations were 

developed based on the FSDT within the theory of linear elasticity. Alipour et al. 

(2010) studied the free vibration response of two-directional FG circular plates of 

variable thickness by differential transform method (DTM) based on FSDT. They 

carried out that thickness variability may have remarkable effects on the free 

vibration response. Shariyat and Alipour (2010) used differential transformation 

method to develop the semi analytical solution for free vibration response of two-
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directional functionally graded circular plates with restrained edges, resting on 

elastic foundations. Nie and Zhong (2010) studied the dynamic analysis of multi-

directional FG annular plates with state space-based DQM based on the 3D elastic 

theory. They carried out that the graded materials in the radial direction can 

improve the stiffness of the plate. Alipour and Shariyat (2011) presented the free 

vibration analysis of two-directional FG circular plates resting on elastic 

foundations with the aid of differential transform technique. They showed that the 

elastic foundation leads to higher free vibration characteristics. Shariyat and 

Alipour (2011) investigated the modal stress analysis of two-dimensional FG 

circular plates resting on elastic foundations. Kermani et al. (2012) examined the 

3D free vibration behavior of multi-directional FG circular and annular plates are 

with the aid of the state space based DQM. They showed that the free vibration 

characteristics of the plates increase when the plate becomes thicker. Vibration 

analysis of axisymmetric circular plates made up of two-directional FGMs was 

carried out by Kumar and Lal (2013). They observed that the natural frequencies of 

clamped plates are greater than those of simply supported plates. Lal and Ahlawat 

(2015) investigated the radially symmetric vibration parameters of two-directional 

FG circular plates subjected to in-plane hydrostatic forces using the DQM. They 

indicated that the natural frequencies increase as the plate becomes stiffer in the 

radial direction, but when the plate becomes denser in the radial direction the 

natural frequencies decrease. Ahlawat and Lal (2016) examined the axisymmetric 

vibration of multi-directional FG circular plate resting on an elastic foundation by 

using generalized DQM.   

Tajeddini et al. (2011) examined three-dimensional free vibrations of FG 

thick circular plates of variable thickness resting on elastic foundation. They 

investigated the effects of material gradient and the stiffness of foundation on the 

natural frequencies. Yas and Tahouneh (2012) presented the free vibration 

characteristics of FG annular plates on the elastic foundation. They used DQM 

based on the 3D theory of elasticity in their work. Jodaei et al. (2012) studied the 
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3D free vibration response of FG annular plates based on state-space based DQM 

and artificial neural network. Free vibration characteristics of FG circular plates 

with variable thickness was investigated by Shamekhi (2013) using Meshless 

method. The influence of the thickness variation on the natural frequencies was 

presented in their work. The exact vibration parameters of thick FG circular and 

annular plates with stepped thickness were presented by Hosseini-Hashemi et al. 

(2013). Natural frequencies of elastically supported FG circular plates were carried 

out by Żur (2018) with the help of the quasi- Green’s function. They studied the 

effects of volume fraction index and boundary conditions on the free vibration 

response of FG circular plates. 

Literature review shows that there are several studies dealing with the 

axisymmetric bending analysis of one dimensional FG circular and annular plates. 

Recent developments and improvements in the computer-aided manufacturing 

processes make it possible to fabricate FGMs in two directions. 2D-FGMs are 

made of continues and smooth gradation of three or four different material phases. 

Volume fractions of these constituent materials vary smoothly in a predetermined 

composition profile. Furthermore, there are just a few studies on the bending 

analysis of 2D-FG circular and annular plates with uniform thickness. Hence, for 

the first time, the axisymmetric bending response of 2D-FG thick circular and 

annular plates with variable thickness based on the FSDT is presented. 

When the literature is reviewed, it can be clearly seen that there are many 

papers deal with dynamic analysis of FG and 2D-FG circular and annular plates of 

uniform thickness. But there are only a few works on the vibration analysis of 2D-

FG circular and annular plates of variable thickness.  Therefore, in this work, free 

and forced vibration behaviors of 2D-FG thick circular and annular plates with 

variable thickness are examined in conjunction with FSDT and the Complementary 

Function Method (CFM) in the Laplace space. This method is attempted to obtain 

accurate fundamental frequencies and the transient behavior of the considered 

structure. The time-dependent governing equations of the structure have first been 
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obtained. Then, the canonical equations are transferred to the Laplace space and the 

CFM has been employed to solve those canonical form for a set of Laplace 

parameters. Butcher's RK5 method is applied to numerical solutions. To 

retransform the obtained results to the time-space an accurate inverse Laplace 

transform method has been used. 
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3. MATERIAL AND METHOD  

 

Variation of material properties, governing equations of the problem on 

hand, and the solution procedure are given in this section. 

Closed-form solution of the static and dynamic behavior of 2D-FG circular 

and annular plates are only available for a number of problems with simple 

boundary conditions and simple thickness functions. In order to carry out the 

axisymmetric bending, free vibration and transient response of 2D-FG thick 

circular and annular plates with variable thickness, efficient and powerful 

numerical methods such as the CFM are needed. In numerical analysis, the CFM is 

an approach for solving a boundary value problem by reducing it to the solution of 

an initial value problem. 

In this thesis, the governing equations are carried out based on the FSDT. 

Obtained canonical equations of the static and free vibration behavior of the 

considered structures are solved numerically by the CFM. The forced vibration 

behavior of the considered structures is examined by the CFM in the Laplace 

space. The time-dependent governing equations have first been obtained. Then, the 

canonical equations are transferred to the Laplace space and the CFM has been 

employed to solve those canonical form for a set of Laplace parameters. Butcher's 

RK5 method (see Chapra and Canale (2010)) is applied in numerical solutions. To 

retransform the obtained results to the time space an accurate inverse Laplace 

transform method has been used. The damping model of Kelvin is used in the 

damped forced vibration analysis. 

The CFM is successfully applied previously in structural mechanics 

problems by Temel et al. (2004), Temel (2004), Çalım (2009), Tutuncu and Temel 

(2009), Çalım (2012), Temel et al. (2014), Yildirim and Tutuncu (2018a), Yildirim 

and Tutuncu (2018b), Noori et al. (2018a), Aslan et al. (2018), Noori et al. (2018b), 

Temel and Noori (2019) and Yildirim and Tutuncu (2019). 



3. MATERIAL AND METHOD  Ahmad Reshad NOORI 

12 

3.1. Material 

 Consider a 2D functionally graded Mindlin-Reissner axisymmetric annular 

or circular plate of variable thickness h(r), inner radius ri, and outer radius ro as 

given in Figure (3.1). In this thesis, two types of material variation are considered.  

 

 
Figure 3. 1. Schematic of an annular plate 
 

3.1.1. Type A – Exponential Functionally Graded Material 

The Young’s modulus and mass density of the plate vary continuously in 

both thickness and radial directions, while the Poisson’s ratio is assumed to be 

constant.   

 

,ݎሺܧ												 ሻݖ ൌ ଴ܧ ∗ ݁
ఒ೥	ቀ

೥
೓ሺೝሻ

ା
భ
మ
ቁାఒೝ ሺ

ೝశೝ೔
ೝ೚

ሻ
 (3.1) 

 

,ݎሺߩ												 ሻݖ ൌ ଴ߩ ∗ ݁
ఒ೥	ቀ

೥
೓ሺೝሻ

ା
భ
మ
ቁାఒೝ ሺ

ೝశೝ೔
ೝ೚

ሻ
 (3.2) 

 

Here, ߣ௥ and ߣ௭ are material gradient indeces through the radial and 

thickness directions which take nonnegative values. z is distance from mid-surface 

of the plate along z axis. The r-coordinate is taken in radial direction outward from 

the inner radius of the plate.  In these equations, ܧ଴ ൌ 380	GPa and	ߩ଴ ൌ 3800 

kg/m3 are the values of the Young’s modulus and mass density at the bottom of the 
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inner side of the plate ሺݖ ൌ െ
௛

ଶ
	 , ݎ ൌ 0ሻ. (ߣ௥ ൌ 0 and ߣ௭ ൌ 0) correspond to an 

isotropic homogeneous material, (ߣ௭ ൌ 0) corresponds to a radially FG material 

and (ߣ௥ ൌ 0) correspond to FG material through the thickness. The gradation of the 

modulus of elasticity for circular plate ሺݎ௢ ൌ ௜ݎ		;5 ൌ ௥ߣ	;0 ൌ 1; ݄ ൌ 1 and ߣ௭ ൌ 1) 

is presented in Figure (3.2). 

 
Figure 3. 2. Modulus of elasticity 

 

3.1.2. Type B – Power-Law Functionally Graded Material 

The axisymmetric plate is assumed to be made by a smooth variation of 

two ceramic and two metal alloy phases. The material properties of the plate are 

supposed to vary along both thickness and radial directions. The volume fractions 

of the materials are expressed as follows: 

 

												 ௠ܸଵሺݎ, ሻݖ ൌ ቈ1 െ ൬
ݎ

௢ݎ െ ௜ݎ
൰
ఒೝ
቉ ൬
݄ሺݎሻ െ ݖ2
2݄ሺݎሻ

൰
ఒ೥

 (3.3) 

 

												 ௠ܸଶሺݎ, ሻݖ ൌ ൬
ݎ

௢ݎ െ ௜ݎ
൰
ఒೝ
൬
݄ሺݎሻ െ ݖ2
2݄ሺݎሻ

൰
ఒ೥

 (3.4) 
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												 ௖ܸଵሺݎ, ሻݖ ൌ ቈ1 െ ൬
ݎ

௢ݎ െ ௜ݎ
൰
ఒೝ
቉ ൥1 െ ൬

݄ሺݎሻ െ ݖ2
2݄ሺݎሻ

൰
ఒ೥

൩ (3.5) 

 

												 ௖ܸଶሺݎ, ሻݖ ൌ ൬
ݎ

௢ݎ െ ௜ݎ
൰
ఒೝ
൥1 െ ൬

݄ሺݎሻ െ ݖ2
2݄ሺݎሻ

൰
ఒ೥

൩ (3.6) 

 

where m1,m2, c1 and c2 shows the first and second metal, and ceramic. ߣ௥ and ߣ௭ are 

volume fraction exponents through the radial and thickness directions which take 

nonnegative values. z is distance from mid-surface of the plate along z axis. The r-

coordinate is taken in radial direction outward from the inner radii of the plate. The 

modulus of elasticity and mass density of the two-dimensional FG circular plate is 

derived by: 

 

,ݎሺܧ												 ሻݖ ൌ ௠ଵܧ ௠ܸଵ ൅ ௠ଶܧ ௠ܸଶ ൅ ௖ଵܧ ௖ܸଵ ൅ ௖ଶܧ ௖ܸଶ (3.7) 

 

,ݎሺߩ												 ሻݖ ൌ ௠ଵߩ ௠ܸଵ ൅ ௠ଶߩ ௠ܸଶ ൅ ௖ଵߩ ௖ܸଵ ൅ ௖ଶߩ ௖ܸଶ (3.8) 

 

The gradation of the modulus of elasticity and volume fractions for an 

annular plate ሺݎ௢ ൌ ௜ݎ		;5 ൌ ௥ߣ	;1 ൌ 3; ݄ ൌ 1 and ߣ௭ ൌ 2) is presented in Figures 

(3.3 – 3.7). 

 

Table 3.1 Material properties 
Component Material E (GPa) ࣋	(kg/m3) 

m1 Titanium alloy 115 4515 

m2 Aluminum alloy 70 2715 

c1 Silicon carbide (SiC) 440 3210 

c2 Alumina 380 3800 
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It is apparent from Eq. (3.7) and Figures (3.2 – 3.6) that the bottom corner 

at the inner radius (ݖ ൌ െ݄௜/2, ݎ ൌ 0) is purely titanium alloy, the upper corner at 

the inner radius (ݖ ൌ ൅݄௜/2, ݎ ൌ 0) is purely silicon carbide, the bottom corner at 

the outer radius (ݖ ൌ െ݄଴/2, ݎ ൌ ௢ݎ െ  ௜) is purely aluminum alloy and the upperݎ

corner at the outer radius (ݖ ൌ ൅݄଴/2, ݎ ൌ ௢ݎ െ  ௜) is purely alumina. The basicݎ

material properties of the plate are presented in Table 1. The Poisson’s ratio is 

assumed to be constant	ሺݒ ൌ 0.3ሻ. 

 
Figure 3. 3. Modulus of elasticity 

 
Figure 3. 4. Volume fraction of SiC 
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Figure 3. 5. Volume fraction of Alumina 

 

௥ߣ) ൌ 0 and ߣ௭ ൌ 0) correspond to an isotropic homogeneous material, 

௭ߣ) ൌ 0) corresponds to a radially FG material and (ߣ௥ ൌ 0) correspond to FG 

material through the thickness. 

 

 
Figure 3. 6. Volume fraction of Titanium alloy 
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Figure 3. 7. Volume fraction of Aluminum alloy 
 

3.2. Axisymmetric Bending of 2D-FG Thick Circular and Annular Plates with 

Variable Thickness 

 In the present thesis, an effective and accurate numerical approach is 

applied to the axisymmetric bending of 2D-FG Mindlin-Reissner circular and 

annular plates with variable thickness. The material properties are assumed to vary 

continuously both in thickness and radial directions.  Governing equations are 

carried out by the principle of minimum total potential energy based on the FSDT. 

Next, the governing equations are converted to a set of ordinary differential 

equations (ODEs). Obtained canonical equations are solved numerically by the 

CFM. The fifth-order Runge– Kutta (RK5) algorithm has been employed in the 

numerical solution process. The novelty of this study is the infusion of this method 

to the axisymmetric bending of a wide range of solid or annular plates, with linear 

or non-linear thickness function, radially FG, FG in the thickness direction or 2D-

FG, without any restrictions. The suggested model allows the presence of 

continuous as well as discrete functions. 
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3.2.1. Governing Equations 

The plate is considered to have a variable thickness. Variation of the plate 

thickness is described by the following function.  

 

 

 

 

where ݄௜ and ݄଴ are the thickness of the plate at inner and outer radii, and ߣ௛ is 

geometric constant. Governing equations are obtained based on the FSDT (see 

Wang et al. (2000)). The displacements field can be presented as follows: 

 

where ݑሺݎሻ is radial displacement,  ݓሺݎሻ is the transverse deflection of a point at 

the midplane (ݖ ൌ 0ሻ and ߯ሺݎሻ is the rotation.  

 

 

												݄ሺݎሻ ൌ ݄௜ሺ1 െ  ሻఒ೓ (3.9)ߙ݊

												݊ ൌ 1 െ ൬
݄௜
݄଴
൰

భ
ഊ೓
		 (3.10) 

ߙ												 ൌ
ݎ

଴ݎ െ ௜ݎ
 (3.11) 

												 ௥ܷ ൌ ሻݎሺݑ ൅ ;	ሻݎሺ߯	ݖ 	 ௭ܷ ൌ ;ሻݎሺݓ െ
݄ሺݎሻ
2

൑ ݖ ൑
݄ሺݎሻ
2

 (3.12) 

௥௥ߝ												 ൌ
ݑ݀
ݎ݀

ൌ  (3.13) ′ݑ

ఏఏߝ												 ൌ
ݑ

௜ݎ ൅ ݎ
 (3.14) 
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where 

 

 

The linear relationship between the stresses and strains of a point of the 

considered plate can be given by Hooke’s law as follows: 

 

 

 

with the aid of those equations the relationship between the internal forces and the 

strains can be derived as follows: 

												߯௥௥ ൌ
݀߯
ݎ݀

ൌ ߯′ (3.15) 

												߯ఏఏ ൌ
߯

௜ݎ ൅ ݎ
 (3.16) 

௥௭ߛ												 ൌ
߲ ௥ܷ

ݖ߲
൅
߲ ௭ܷ

ݎ߲
ൌ ߯ ൅

ݓ݀
ݎ݀

ൌ ߯ ൅  (3.17) ′ݓ

												
݀ሺ∙ሻ
ݎ݀

ൌ ሺ∙ሻ′ (3.18) 

௥௥ߪ											 ൌ
,ݖሺܧ ሻݎ
1 െ ଶݒ

ሺߝ௥௥ ൅ ఏఏߝݒ ൅ ௥௥߯ݖ ൅ ݖ ݒ ߯ఏఏሻ (3.19) 

ఏఏߪ											 ൌ
,ݖሺܧ ሻݎ
1 െ ଶݒ

ሺߝఏఏ ൅ ௥௥ߝݒ ൅ ݖ ߯ఏఏ ൅ ݖ ݒ ߯௥௥ሻ (3.20) 

											߬௥௭ ൌ
,ݖሺܧ ሻݎ
2ሺ1 ൅ ሻݒ

 ௥௭ (3.21)ߛ
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											 ௥ܰ௥ ൌ න ݖ݀	௥௥ߪ

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

	

ൌ න
,ݖሺܧ ሻݎ
1 െ ଶݒ

ሺߝ௥௥ ൅ ఏఏߝݒ ൅ ௥௥߯ݖ ൅ ݖ ݒ ߯ఏఏሻ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 

(3.22) 

											 ఏܰఏ ൌ න ݖ݀	ఏఏߪ

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

ൌ න
,ݖሺܧ ሻݎ
1 െ ଶݒ

ሺߝఏఏ ൅ ௥௥ߝݒ ൅ ݖ ߯ఏఏ ൅ ݖ ݒ ߯௥௥ሻ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 

(3.23) 

௥௥ܯ											 ൌ න ݖ݀	ݖ	௥௥ߪ

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

ൌ න
,ݖሺܧ ሻݎ
1 െ ଶݒ

ሺߝ௥௥ ൅ ఏఏߝݒ ൅ ௥௥߯ݖ

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

൅ ݖ	ఏఏሻ߯	ݒ	ݖ  ݖ݀

(3.24) 

ఏఏܯ											 ൌ න ݖ݀	ݖ	ఏఏߪ

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

ൌ න
,ݖሺܧ ሻݎ
1 െ ଶݒ

ሺߝఏఏ ൅ ௥௥ߝݒ ൅ ఏఏ߯	ݖ 	

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

൅ ݖ	௥௥ሻ߯	ݒ	ݖ  ݖ݀

(3.25) 
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where ௥ܰ௥ and ఏܰఏ are radial and circumferential components of internal forces, 

 ఏఏ are radial and circumferential components of internal moments andܯ ௥௥ andܯ

ܳ௥௭ is the shear force.  The plate constitutive equations are obtained by integrations 

of Eqs. (3.22-3.26) and presented as follows: 

 

 

 

 

 

 

where 

 

											ܳ௥௭ ൌ න ݇௦߬௥௭		݀ݖ

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

ൌ න ݇௦
,ݖሺܧ ሻݎ
2ሺ1 ൅ ሻݒ

௥௭ߛ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 (3.26) 

											 ௥ܰ௥ ൌ ′ݑଵଵܣ ൅ ଵଶܣ 	
ݑ

௜ݎ ൅ ݎ
൅ ′ଵଵ߯ܤ ൅ ଵଶܤ

߯
௜ݎ ൅ ݎ

 (3.27) 

											 ఏܰఏ ൌ ଵଵܣ
ݑ

௜ݎ ൅ ݎ
൅ ′ݑଵଶܣ ൅ ଵଵܤ

߯
௜ݎ ൅ ݎ

൅ ଵଶܤ ߯′ (3.28) 

௥௥ܯ											 ൌ ′ݑଵଵܤ ൅ ଵଶܤ 	
ݑ

௜ݎ ൅ ݎ
൅ ଵଵܦ ߯′ ൅ ଵଶܦ

߯
௜ݎ ൅ ݎ

 (3.29) 

ఏఏܯ											 ൌ ଵଵܤ
ݑ

௜ݎ ൅ ݎ
൅ ′ݑଵଶܤ ൅ ଵଵܦ

߯
௜ݎ ൅ ݎ

൅ ଵଶܦ ߯′ (3.30) 

											ܳ௥௭ ൌ ହହሺ߯ܣ ൅  ሻ (3.31)′ݓ
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ଵଵܣ											 ൌ න
,ݖሺܧ ሻݎ
1 െ ଶݒ

ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 (3.32) 

ଵଶܣ											 ൌ න
,ݖሺܧ	ݒ ሻݎ

1 െ ଶݒ
ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

ൌ ݒ  ଵଵ (3.33)ܣ

ଵଵܤ											 ൌ න
,ݖሺܧ ሻݎ
1 െ ଶݒ

ݖ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 (3.34) 

ଵଶܤ											 ൌ න
,ݖሺܧ	ݒ ሻݎ
1 െ ଶݒ

ݖ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

ൌ ݒ  ଵଵ (3.35)ܤ

ଵଵܦ											 ൌ න
,ݖሺܧ ሻݎ
1 െ ଶݒ

ଶݖ	 ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 (3.36) 

ଵଶܦ											 ൌ න
,ݖሺܧ	ݒ ሻݎ
1 െ ଶݒ

ଶݖ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

ൌ ݒ  ଵଵ (3.37)ܦ

ହହܣ											 ൌ ݇௦ න
,ݖሺܧ ሻݎ
2ሺ1 ൅ ሻݒ

ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

ൌ ݇௦ න ,ݖሺܩ ሻݎ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 (3.38) 
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where	݇௦ is the shear correction factor and ܩሺݖ,  is the shear modulus. To carry	ሻݎ

out the governing equations the principle of minimum total potential energy is 

applied. The total potential energy of an axisymmetric plate is: 

 

 

The potential energy of the internal forces is as follows: 

 

 

The potential energy of the external forces is given as: 

 

 

where ݌௭ is arbitrary distributed transverse, ݌௥ is arbitrary distributed shear load 

and  

 

 

The total potential energy for the considered plate can be defined as: 

 

௧ߎ											 ൌ ௜ߎ ൅  ௘ (3.39)ߎ

௜ߎ										 ൌ
1
2
න න ሺ ௥ܰ௥ߝ௥௥ ൅ ఏܰఏߝఏఏ ൅ ௥௥߯௥௥ܯ ൅ ఏఏ߯ఏఏܯ

ଶగ

଴

௥

଴

൅ ܳ௥௭ߛ௥௭ሻ	݀ܣ 

(3.40) 

௘ߎ										 ൌ െන න ሺ݌௥ݑ ൅ ሻݓ௭݌ ܣ݀
ଶగ

଴

௥

଴
 (3.41) 

ܣ݀										 ൌ ݕ ݕ	 ; ݎ݀	ߠ݀ ൌ ௜ݎ ൅  (3.42) ݎ
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In this case the minimum total potential energy can be given by 

 

 

 

where L is the Lagrangian function function and may be written as: 

 

For a set of ODEs, when the related derivatives are written on the left side and all 

other terms are written on the right side of the equation, those equations are called 

the canonical equations. Canonical equations of the considered plate are obtained 

for the first time in this thesis. 

The canonically conjugate momentums to the coordinates (ݑ, ,ݓ ߯ሻ	are defined by:  

 

௧ߎ										 ൌ නߨ2 ൤
1
2
ሺ ௥ܰ௥ߝ௥௥ ൅ ఏܰఏߝఏఏ ൅ ௥௥߯௥௥ܯ ൅ ఏఏ߯ఏఏܯ

௥

଴

൅ ܳ௥௭ߛ௥௭ሻ െ ሺ݌௥ݑ ൅ ሻ൨ݓ௭݌  ݎ݀ݕ

(3.43) 

௧ߎߜ										 ൌ 0 (3.44) 

ߜ										 න ݎ݀	ܮ
௥

଴
ൌ 0 (3.45) 

ܮ										 ൌ ൤
1
2
ሺ ௥ܰ௥ߝ௥௥ ൅ ఏܰఏߝఏఏ ൅ ௥௥߯௥௥ܯ ൅ ఏఏ߯ఏఏܯ ൅ ܳ௥௭ߛ௥௭ሻ

െ ሺ݌௥ݑ ൅ ሻ൨ݓ௭݌  ݕ

(3.46) 

										 ଵܲ ൌ
ܮ߲
′ݑ߲

ൌ ݕ ൬ܣଵଵݑ′ ൅ ଵଶܣ
ݑ
ݕ
൅ ′ଵଵ߯ܤ ൅ ଵଶܤ

߯
ݕ
൰ (3.47) 
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By considering Eqs. (3.27 – 3.31), these Eqs. (3.47 – 3.49) can be rewritten as: 

 

 

 

The Legendre transformation of the Lagrangian is called Hamiltonian (ܪ) and it 

can be written for the considered problem as follows:  

 

 

the canonical equations of Hamilton could be derived as: 

 

 

 

										 ଶܲ ൌ
ܮ߲
′ݓ߲

ൌ ሺ߯	ହହܣ	ݕ ൅  ሻ (3.48)′ݓ

										 ଷܲ ൌ
ܮ߲
߲߯′

ൌ ݕ ൬ܤଵଵݑ′ ൅ ଵଶܤ
ݑ
ݕ
൅ ଵଵܦ ߯′ ൅ ଵଶܦ

߯
ݕ
൰ (3.49) 

										 ଵܲ ൌ 	ݕ ௥ܰ௥								 (3.50) 

										 ଶܲ ൌ   (3.51)									௥௭ܳ	ݕ

										 ଷܲ ൌ  ௥௥ (3.52)ܯ	ݕ

ܪ										 ൌ ሺݕ ௥ܰ௥ݑᇱ ൅ ܳ௥௭ݓᇱ ൅ ௥௥߯′ሻܯ െ  (3.53) ܮ

										 ଵܲ
ᇱ ൌ െ

ܪ߲
ݑ߲

									 ; 		 ଶܲ′ ൌ െ
ܪ߲
ݓ߲

; ଷܲ′ ൌ െ
ܪ߲
߲߯

 (3.54) 

										 ଵܲ
ᇱ ൌ ଵଵܣ 	

ݑ
ݕ
൅ ᇱݑଵଶܣ ൅ ଵଵܤ

߯
ݕ
൅ ଵଶ߯ᇱܤ െ ݕ௥݌  (3.55) 
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The derivatives of the canonically conjugate momentums can be given as: 

 

 

 

Substitution of the Eqs. (3.50 - 3.52) into Eqs. (3.47 - 3.49) and Eqs. (3.58 - 3.60) 

into Eqs. (3.55 - 3.57) lead to the following governing ordinary differential 

equations of the considered plate. 

 

 

 

 

										 ଶܲ
ᇱ ൌ െ݌௭(3.56) ݕ 

										 ଷܲ
ᇱ ൌ ଵଵܤ 	

ݑ
ݕ
൅ ᇱݑଵଶܤ ൅ ଵଵܦ

߯
ݕ
൅ ଵଶ߯ᇱܦ െ ݕ ௥௥ܯ ൅ ݕ ܳ௥௭ (3.57) 

										 ଵܲ
ᇱ ൌ ′ݕ ௥ܰ௥ ൅  ௥௥ (3.58)′ܰ	ݕ

										 ଶܲ
ᇱ ൌ ′ݕ ܳ௥௭ ൅  ௥௭ (3.59)′ܳ	ݕ

										 ଷܲ
ᇱ ൌ ′ݕ ௥௥ܯ ൅  ௥௥ (3.60)′ܯ	ݕ

										
ݑ݀
ݎ݀

ൌ
ଵଵܦ ௥ܰ௥ െ ௥௥ܯଵଵܤ

ଵଵܦଵଵܣ െ ଵଵܤ
ଶ െ ݒ

ݑ
௜ݎ ൅ ݎ

 (3.61) 

										
ݓ݀
ݎ݀

ൌ
	ܳ௥௭
	ହହܣ	

– ߯ (3.62) 

										
݀߯
ݎ݀

ൌ
௥௥ܯଵଵܣ െ ଵଵܤ ௥ܰ௥

ଵଵܦଵଵܣ െ ଵଵܤ
ଶ െ ݒ

߯
௜ݎ ൅ ݎ

 (3.63) 
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3.2.2. Application of the CFM 

To investigate the axisymmetric bending of the considered structure the 

CFM is applied. The main principle of this technique is that it reduces the two-

point boundary value problems (BVPs) down to initial value problems (IVPs) (See 

Mengi (1993)). It is an effective and accurate strategy when applied to the present 

class of problem. 

The governing Eqs. (3.61 - 3.66) can be rewritten in matrix form in Eq 

(3.67). In the following equation ሾૐሿ is the differential transition matrix, ሼ܇ሽ is the 

state vector and ሼ۴ሽ is the load vector for the considered problem. 

 

 

										
݀ ௥ܰ௥

ݎ݀
ൌ

1 െ ଶݒ

ሺݎ௜ ൅ ሻଶݎ
ሺܣଵଵ	ݑ ൅ ଵଵܤ ߯ሻ ൅

ݒ െ 1
௜ݎ ൅ ݎ ௥ܰ௥ െ  ௥ (3.64)݌

										
݀ܳ௥௭
ݎ݀

ൌ െ
1

௜ݎ ൅ ݎ
ܳ௥௭ െ  ௭ (3.65)݌

										
௥௥ܯ݀

ݎ݀
ൌ ܳ௥௭ ൅

1 െ ଶݒ

ሺݎ௜ ൅ ሻଶݎ
ሺܤଵଵ ݑ ൅ ଵଵܦ ߯ሻ ൅

ݒ െ 1
௜ݎ ൅ ݎ

 ௥௥ (3.66)ܯ

										

ە
ۖ
۔

ۖ
ۓ
′ݑ
′ݓ
߯′
ܰ′௥௥
ܳ′௥௭
௥௥ۙ′ܯ

ۖ
ۘ

ۖ
ۗ

ᇣᇧᇤᇧᇥ
ሼ܇ᇱሽ

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
߰ଵଵ 0 0
0 0 ߰ଶଷ
0 0 ߰ଷଷ

߰ଵସ 0 ߰ଵ଺
0 ߰ଶହ 0
߰ଷସ 0 ߰ଷ଺

߰ସଵ 0 ߰ସଷ
0 0 0
߰଺ଵ 0 ߰଺ଷ

߰ସସ 0 0
0 ߰ହହ 0
0 ߰଺ହ ߰଺଺ے

ۑ
ۑ
ۑ
ۑ
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ሾૐሿ

ە
ۖ
۔

ۖ
ۓ
ݑ
ݓ
߯
௥ܰ௥

ܳ௥௭
௥௥ۙܯ

ۖ
ۘ

ۖ
ۗ

ᇣᇧᇤᇧᇥ
ሼ܇ሽ

൅

ە
ۖ
۔

ۖ
ۓ

0
0
0
െ݌௥
െ݌௭
0 ۙ
ۖ
ۘ

ۖ
ۗ

ᇣᇧᇤᇧᇥ
ሼ۴ሽ

 
(3.67) 
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To find the solution we know that we have to determine the boundary 

conditions. In this thesis, the following boundary conditions are considered. 

 Solid circular plate ሺ࢏࢘ ൌ ૙ሻ 

(a) Clamped (C): 

  

 

 

(b) Simply supported (S):  

 

 

(c) Roller supported (R):  

 

 

 

 Annular plate with inner radius ࢏࢘, and outer radius ࢕࢘ 

(a) Clamped – clamped  (C – C ):  

ݑ									 ൌ 0	; 	 ߯ ൌ 0;				ܳ௥௭ ൌ 0  at   ݎ ൌ 0 (Symmetry boundary 

									conditions) 
(3.68) 

ݑ									 ൌ 0	; 	 ݓ ൌ 0; 				߯ ൌ 0     at   ݎ ൌ  ௢ (3.69)ݎ

ݑ									 ൌ 0	; 	 ߯ ൌ 0;				ܳ௥௭ ൌ 0  at   ݎ ൌ 0  ( Symmetry boundary 

									conditions) 
(3.70) 

ݑ									 ൌ 0	; 	 ݓ ൌ ௥௥ܯ				;0 ൌ 0     at   ݎ ൌ  ௢ (3.71)ݎ

ݑ									 ൌ 0	; 	 ߯ ൌ 0;				ܳ௥௭ ൌ 0  at   ݎ ൌ 0  ( Symmetry boundary 

									conditions) 
(3.72) 

ݓ									 ൌ 0	; ௥ܰ௥ ൌ ௥௥ܯ				;0 ൌ 0     at   ݎ ൌ  ௢ (3.73)ݎ
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(b) Simply supported – clamped  (S – C ): 

  

 

(c) Clamped – simply supported (C – S ):  

 

 

 

(d) Simply – simply supported (S – S ):  

 

 

 

(e) Clamped – free (C – F ):  

 

ݑ									 ൌ 0	; 	 ݓ ൌ 0; 				߯ ൌ 0     at   ݎ ൌ 0 (3.74) 

ݑ									 ൌ 0	; 	 ݓ ൌ 0; 				߯ ൌ 0     at   ݎ ൌ ௢ݎ െ  ௜ (3.75)ݎ

ݑ									 ൌ 0	; 	 ݓ ൌ ௥௥ܯ			;0 ൌ 0     at   ݎ ൌ 0 (3.76) 

ݑ									 ൌ 0	; 	 ݓ ൌ 0; 				߯ ൌ 0     at   ݎ ൌ ௢ݎ െ  ௜ (3.77)ݎ

ݑ									 ൌ 0	; 	 ݓ ൌ 0; 				߯ ൌ 0    at   ݎ ൌ 0 (3.78) 

ݑ									 ൌ 0	; 	 ݓ ൌ ௥௥ܯ			;0 ൌ 0     at   ݎ ൌ ௢ݎ െ  ௜ (3.79)ݎ

ݑ									 ൌ 0	; 	 ݓ ൌ ௥௥ܯ			;0 ൌ 0     at   ݎ ൌ 0 (3.80) 

ݑ									 ൌ 0	; 	 ݓ ൌ ௥௥ܯ			;0 ൌ 0     at   ݎ ൌ ௢ݎ െ  ௜ (3.81)ݎ

ݑ									 ൌ 0	; 	 ݓ ൌ 0; 				߯ ൌ 0     at   ݎ ൌ 0 (3.82) 
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The state vector of the considered problem is 

 

The canonical equations for the considered structure are 

 

 

 

 

 

 

 

The general solution for the system of Eqs. (3.85 - 3.90) is: 

									 ௥ܰ௥ ൌ 0	; ܳ௥௭ ൌ ௥௥ܯ			;0 ൌ 0     at   ݎ ൌ ௢ݎ െ  ௜ (3.83)ݎ

									

ە
ۖ
۔

ۖ
ۓ ଵܻ

ଶܻ

ଷܻ

ସܻ

ହܻ

଺ܻۙ
ۖ
ۘ

ۖ
ۗ

ൌ

ە
ۖ
۔

ۖ
ۓ
ݑ
ݓ
߯
௥ܰ௥

ܳ௥௭
௥௥ۙܯ

ۖ
ۘ

ۖ
ۗ

 (3.84) 

									 ଵܻ
ᇱ ൌ ߰ଵଵ ଵܻ ൅ ߰ଵସ ସܻ ൅ ߰ଵ଺ ଺ܻ (3.85) 

									 ଶܻ
ᇱ ൌ ߰ଶଷ ଷܻ ൅ ߰ଶହ ହܻ (3.86) 

									 ଷܻ
ᇱ ൌ ߰ଷଷ ଷܻ ൅ ߰ଷସ ସܻ ൅ ߰ଷ଺ ଺ܻ (3.87) 

									 ସܻ
ᇱ ൌ ߰ସଵ ଵܻ ൅ ߰ସଷ ଷܻ ൅ ߰ସସ ସܻ െ  ௥ (3.88)݌

									 ହܻ
ᇱ ൌ ߰ହହ ହܻ െ  ௭ (3.89)݌

									 ଺ܻ
ᇱ ൌ ߰଺ଵ ଵܻ ൅ ߰଺ଷ ଷܻ ൅ ߰଺ହ ହܻ ൅ ߰଺଺ ଺ܻ (3.90) 



3. MATERIAL AND METHOD  Ahmad Reshad NOORI 

31 

									ሼ܇ሽ ൌ ෍ ሺ௠ሻ൧܃௠ൣܥ

଺

௠ୀଵ

൅ ሼ܄ሽ (3.91) 

 

where ൣ܃ሺ௠ሻ൧ are linearly independent complementary solutions. For IVPs mth 

component is equal to 1, whereas all the others are 0. Cm are constants to be 

obtained via boundary conditions. ሼ܄ሽ	is the particular solution with all 0 initial 

conditions. For the numerical solution of the above system of equations the RK5 

algorithm is chosen. The solutions can be calculated for any desired number of 

collocation points through the radial direction.  

  

3.3. Dynamic Analysis 2D-FG Thick Circular and Annular Plates with 

Variable Thickness 

The dynamic analysis of 2D-FG Mindlin-Reissner circular and annular 

plates of variable thickness is investigated by the CFM, a powerful and efficient 

approach in the Laplace space. A powerful inverse algorithm is applied to 

retransfer the results from the Laplace space.  The material properties are graded in 

both thickness and radial directions. The thickness of the plate is considered to be 

radially varying. The influence of shear deformation is considered in the 

formulation and the damping model of Kelvin is used in the damped forced 

vibration analysis. 

 

3.3.1. Governing Equations 

The plate is considered to have a variable thickness. Variation of the plate 

thickness is given in Eq. (3.9). 

In the dynamic case the displacements field can be presented as 

follows (See Reddy (1984)): 
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where ݑሺݎ, ,ݎሺݓ  ,ሻ is radial displacementݐ  ሻ is the transverse deflection of a pointݐ

at the midplane (ݖ ൌ 0ሻ and ߯ሺݎ,   .ሻ is the rotationݐ

 

 

 

 

 

where 

 

 

The linear relationship between the stresses and strains of a point of the 

considered plate is be given in Eqs. (3.19 – 3.21). The relationship between the 

												 ௥ܷ ൌ ,ݎሺݑ ሻݐ ൅ ,ݎሺ߯	ݖ ሻݐ ; ௭ܷ ൌ ,ݎሺݓ ;ሻݐ  (3.92) 

௥௥ߝ												 ൌ
ݑ߲
ݎ߲

ൌ  (3.93) ′ݑ

ఏఏߝ												 ൌ
ݑ

௜ݎ ൅ ݎ
 (3.94) 

  

												߯௥௥ ൌ
߲߯
ݎ߲

ൌ ߯′ (3.95) 

												߯ఏఏ ൌ
߯

௜ݎ ൅ ݎ
 (3.96) 

௥௭ߛ												 ൌ
߲ ௥ܷ

ݖ߲
൅
߲ ௭ܷ

ݎ߲
ൌ ߯ ൅

ݓ߲
ݎ߲

ൌ ߯ ൅  (3.97) ′ݓ

												
߲ሺ∙ሻ
ݎ߲

ൌ ሺ∙ሻ′ (3.98) 
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internal forces and the strains can be derived as in Eqs. (3.22 – 3.26). The plate 

constitutive equations are given by Eqs. (3.27 - 3.31). The total potential energy of 

an axisymmetric plate is given in Eq. (3.43).   

The Langrangian for a system can be defined by:  

 

where ܶ is the kinetic energy and can be obtained as: 

 

 

where 

 

By substituting the value of ݀ܣ which is given in Eq. (3.42), the kinetic energy can 

be derived as follows: 

 

 

The values of ሶܷ ௥
ଶ
 and ሶܷ ௭

ଶ
are described as: 

 

ܮ										 ൌ ܶ െ  ௧ (3.99)ߎ

 

ߜ										 න ݐ݀	ܮ
௧ଶ

௧ଵ
ൌ 0 (3.100) 

								ܶ ൌ
1
2
න න න ቀ ,ݎሺߩ ሻሺݖ ሶܷ௥

ଶ
൅ ሶܷ௭

ଶ
ቁ ܣ݀ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

௥

଴

ଶగ

଴
 (3.101) 

											ሺ∙ሻሶ 	 ൌ 	
߲ሺ∙ሻ
ݐ߲

 (3.102) 

								ܶ ൌ නߨ2 න
1
2
ቀ	ߩሺݎ, ሻሺݖ ሶܷ௥

ଶ
൅ ሶܷ௭

ଶ
ቁ ݎ݀ݖ݀ݕ

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

௥

଴
 (3.103) 
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Subsituting Eqs. (3.104 – 3.105) into Eq. (3.103) gives the kinetic energy equation 

as: 

 

where 

 

 

 

The canonically conjugate momentums to the coordinates (ݑ, ,ݓ ߯ሻ	are 

defined in Eqs. (3.47 – 3.49).  The generalized momentum can be derived as: 

 

							 ሶܷ ௥
ଶ
ൌ ሺݑሶ ൅ 	ݖ ሶ߯ሻଶ ൌ ሶݑ ଶ ൅ ሶݑ2 ݖ ሶ߯ ൅ ଶݖ ሶ߯ଶ (3.104) 

							 ሶܷ ௭
ଶ
ൌ ሶݓ ଶ (3.105) 

										ܶ ൌ නߨ2
1
2
ሺ	ܫଵଵሺݑሶ ଶ ൅ ሶݓ ଶሻ ൅ 2 ሶݑଵଶܫ ሶ߯ ൅ ଶଶܫ ሶ߯ଶሻݎ݀ݕ

௥

଴
 (3.106) 

ଵଵܫ											 ൌ න ,ݎሺߩ ݖ݀	ሻݖ

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 (3.107) 

ଵଶܫ											 ൌ න ,ݎሺߩ ݖ	ሻݖ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 (3.108) 

ଶଶܫ											 ൌ න ,ݎሺߩ ଶݖ	ሻݖ ݖ݀

ା௛ሺ௥ሻ/ଶ

ି௛ሺ௥ሻ/ଶ

 (3.109) 
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The derivatives of the canonically conjugate momentums can be given as: 

 

 

 

 

Substitution of the Eqs. (3.50 - 3.52) into Eqs. (3.47 - 3.49) and Eqs. (3.114 - 

3.116) into Eqs. (3.111 - 3.113) give the following governing ordinary differential 

										 ଵܲ
ᇱ ൌ

݀
ݐ݀
ܮ߲
ሶݑ߲

െ
ܮ߲
ݑ߲
						 ; 		 ଶܲ′ ൌ

݀
ݐ݀

ܮ߲
ሶݓ߲

െ
ܮ߲
ݓ߲

; ଷܲ′ ൌ
݀
ݐ݀
ܮ߲
߲ ሶ߯

െ
ܮ߲
߲߯

 (3.110) 

										 ଵܲ
ᇱ ൌ ଵଵܣ 	

ݑ
ݕ
൅ ᇱݑଵଶܣ ൅ ଵଵܤ

߯
ݕ
൅ ଵଶ߯ᇱܤ െ ݕ௥݌ ൅ ଵଵܫ

߲ଶݑ
ଶݐ߲

ݕ

൅ ଵଶܫ
߲ଶ߯
ଶݐ߲

 ݕ	

 

(3.111) 

										 ଶܲ
ᇱ ൌ െ݌௭ݕ ൅ ଵଵܫ

߲ଶݓ
ଶݐ߲

 (3.112) ݕ

										 ଷܲ
ᇱ ൌ ଵଵܤ 	

ݑ
ݕ
൅ ᇱݑଵଶܤ ൅ ଵଵܦ

߯
ݕ
൅ ଵଶ߯ᇱܦ െ ݕ ௥௥ܯ ൅ ݕ ܳ௥௭

൅ ଵଶܫ
߲ଶݑ
ଶݐ߲

ݕ ൅ ଶଶܫ
߲ଶ߯
ଶݐ߲

 ݕ

(3.113) 

										 ଵܲ
ᇱ ൌ ′ݕ ௥ܰ௥ ൅  ௥௥ (3.114)′ܰ	ݕ

										 ଶܲ
ᇱ ൌ ′ݕ ܳ௥௭ ൅  ௥௭ (3.115)′ܳ	ݕ

										 ଷܲ
ᇱ ൌ ′ݕ ௥௥ܯ ൅  ௥௥ (3.116)′ܯ	ݕ
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equations of the considered plate. Canonical equations of the considered plate are 

obtained for the first time in this thesis. 

 

 

 

 

 

3.3.2. Laplace Transform of the Governing Equations 

 The Laplace transform (ࣦሼ	݂ሺݐሻሽሻ of a time-dependent function (݂ሺݐሻሻ for 

ݐ ൐ 0	is: 

										
ݑ߲
ݎ߲

ൌ
ଵଵܦ ௥ܰ௥ െ ௥௥ܯଵଵܤ

ଵଵܦଵଵܣ െ ଵଵܤ
ଶ െ ݒ

ݑ
௜ݎ ൅ ݎ

 (3.117) 

										
ݓ߲
ݎ߲

ൌ
	ܳ௥௭
	ହହܣ	

– ߯ (3.118) 

  

										
߲߯
ݎ߲

ൌ
௥௥ܯଵଵܣ െ ଵଵܤ ௥ܰ௥

ଵଵܦଵଵܣ െ ଵଵܤ
ଶ െ ݒ

߯
௜ݎ ൅ ݎ

 (3.119) 

  

										
߲ ௥ܰ௥

ݎ߲
ൌ

1 െ ଶݒ

ሺݎ௜ ൅ ሻଶݎ
ሺܣଵଵ	ݑ ൅ ଵଵܤ ߯ሻ ൅

ݒ െ 1
௜ݎ ൅ ݎ ௥ܰ௥ െ ௥݌ ൅ ଵଵܫ

߲ଶݑ
ଶݐ߲

൅ ଵଶܫ
߲ଶ߯
ଶݐ߲

	 

(3.120) 

										
߲ܳ௥௭
ݎ߲

ൌ െ
1

௜ݎ ൅ ݎ
ܳ௥௭ െ ௭݌ ൅ ଵଵܫ

߲ଶݓ
ଶݐ߲

 (3.121) 

										
௥௥ܯ߲

ݎ߲
ൌ ܳ௥௭ ൅

1 െ ଶݒ

ሺݎ௜ ൅ ሻଶݎ
ሺܤଵଵ ݑ ൅ ଵଵܦ ߯ሻ ൅

ݒ െ 1
௜ݎ ൅ ݎ

௥௥ܯ ൅ ଵଶܫ
߲ଶݑ
ଶݐ߲

൅ ଶଶܫ
߲ଶ߯
ଶݐ߲

	 

(3.122) 
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where “ݏ" is the parameter of Laplace transform. The Laplace transform of the first 

derivative of a time-dependent function is:  

 

 

By using integration by parts, we have 

 

 

The Laplace transform of the second derivative of a time-dependent function 

Spiegel (1965) can be obtained as follows: 

 

 

The Laplace transformation of the inertias are given as: 

									ࣦሼ	݂ሺݐሻሽ ൌ ሻݏതሺܨ	 ൌ න ݁ି௦௧݂ሺݐሻ ݐ݀

ஶ

଴

 (3.123) 

									ࣦሼ	݂′ሺݐሻሽ ൌ 	න ݁ି௦௧݂′ሺݐሻ ݐ݀

ஶ

଴

ൌ lim
ॣ→ஶ

න݁ି௦௧݂′ሺݐሻ ݐ݀

ॣ

଴

 (3.124) 

										 lim
ॣ→ஶ

න݁ି௦௧݂ᇱሺ௧ሻ݀ݐ

ॣ

଴

ൌ lim
ॣ→ஶ

ቐ݁ି௦௧݂ሺݐሻ ቚ
ॣ
0 ൅ ሻݐන݁ି௦௧݂ሺݏ ݐ݀

ॣ

଴

ቑ  

										ࣦሼ	݂′ሺݐሻሽ ൌ 	 lim
ॣ→ஶ

ቐ݁ି௦ॣ݂ሺॣሻ െ ݂ሺ0ሻ ൅ ݐ݀	ሻݐන݁ି௦௧݂ሺݏ

ॣ

଴

ቑ		 

										ࣦሼ	݂′ሺݐሻሽ ൌ ݏ	 න ݁ି௦௧݂ሺݐሻ ݐ݀

ॣ

଴

െ ݂ሺ0ሻ ൌ ሻݏതሺܨݏ ൅ ݂ሺ0ሻ 

(3.125) 

										ࣦሼ	݂′′ሺݐሻሽ ൌ ሻݏതሺܨଶݏ ൅ ݏ ݂ሺ0ሻ ൅ ݂ሶሺ0ሻ (3.126) 
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The second and third terms on the right-hand side of the Eqs. (3.127 – 

3.131) are the initial conditions given for t = 0; in the present thesis, those initial 

conditions are considered to be zero.  Eqs. (3.117 – 3.122) are transferred to the 

Laplace domain by using Eqs. (3.123 – 3.126). The transferred governing ordinary 

differential equations of the dynamic response of the problems to be tackled are 

presented as follows: 

 

 

										ࣦ ቈܫଵଵ
߲ଶݑ
ଶݐ߲

቉ ൌ ଵଵܫ ቆݏଶݑത ൅ ݏ ,ݎሺݑ 0ሻ ൅
,ݎሺݑ߲ 0ሻ

ݐ߲
ቇ (3.127) 

										ࣦ ቈܫଵଵ
߲ଶݓ
ଶݐ߲

቉ ൌ ଵଵܫ ቆݏଶݓഥ ൅ ݏ ,ݎሺݓ 0ሻ ൅
,ݎሺݓ߲ 0ሻ

ݐ߲
ቇ (3.128) 

										ࣦ ቈܫଵଶ
߲ଶݑ
ଶݐ߲

቉ ൌ ଵଶܫ ቆݏଶݑത ൅ ݏ ,ݎሺݑ 0ሻ ൅
,ݎሺݑ߲ 0ሻ

ݐ߲
ቇ (3.129) 

										ࣦ ቈܫଵଶ
߲ଶ߯
ଶݐ߲

቉ ൌ ଵଶܫ ቆݏଶ߯̅ ൅ ݏ ߯ሺݎ, 0ሻ ൅
߲߯ሺݎ, 0ሻ

ݐ߲
ቇ (3.130) 

										ࣦ ቈܫଶଶ
߲ଶ߯
ଶݐ߲

቉ ൌ ଶଶܫ ቆݏଶ߯̅ ൅ ݏ ߯ሺݎ, 0ሻ ൅
߲߯ሺݎ, 0ሻ

ݐ߲
ቇ (3.131) 

										
തݑ݀
ݎ݀

ൌ
ଵଵܦ ഥܰ௥௥ െ ഥ௥௥ܯଵଵܤ
ଵଵܦଵଵܣ െ ଵଵܤ

ଶ െ ݒ
തݑ

௜ݎ ൅ ݎ
 (3.132) 

										
ഥݓ݀
ݎ݀

ൌ
തܳ௥௭
	ହହܣ	

– ߯̅ (3.133) 
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3.3.3. Application of the CFM 

To examine the dynamic response of the considered structure the CFM is 

applied to the governing equations in the Laplace space. The governing Eqs. (3.132 

- 3.137) can be rewritten in matrix form in Eq (3.138). In the following equation 

ሾૐሿ is the differential transition matrix, ሼ܇ഥሽ is the state vector and ሼ۴തሽ is the load 

vector for the considered problem. 

 

 

The CFM transforms the solution of this BVPs to the solution of some IVPs. The 

boundary conditions are given in Eqs. (3.68 - 3.83). The general solution for the 

system of Eqs. (3.138) is: 

										
݀߯̅
ݎ݀

ൌ
ഥ௥௥ܯଵଵܣ െ ଵଵܤ ഥܰ௥௥	

ଵଵܦଵଵܣ െ ଵଵܤ
ଶ െ ݒ

߯̅
௜ݎ ൅ ݎ

 (3.134) 

  

										
݀ ഥܰ௥௥
ݎ݀

ൌ
1 െ ଶݒ

ሺݎ௜ ൅ ሻଶݎ
ሺܣଵଵ	ݑത ൅ ଵଵܤ ߯̅ሻ ൅

ݒ െ 1
௜ݎ ൅ ݎ

ഥܰ௥௥ െ ௥̅݌ ൅ തݑଶݏଵଵܫ

൅  	ଶ߯̅ݏଵଶܫ

(3.135) 

										
݀ തܳ௥௭
ݎ݀

ൌ െ
1

௜ݎ ൅ ݎ
തܳ௥௭ െ ௭̅݌ ൅ ഥݓଶݏଵଵܫ  (3.136) 

										
ഥ௥௥ܯ݀
ݎ݀

ൌ തܳ௥௭ ൅
1 െ ଶݒ

ሺݎ௜ ൅ ሻଶݎ
ሺܤଵଵ ഥݑ ൅ ଵଵܦ ߯̅ሻ ൅

ݒ െ 1
௜ݎ ൅ ݎ

ഥ௥௥ܯ ൅ തݑଶݏଵଶܫ

൅  	ଶ߯̅ݏଶଶܫ

(3.137) 

									
݀
ݎ݀
ሼ܇ഥሺݎ, ሻሽݏ ൌ ሾૐഥሺݎ, ,ݎഥሺ܇ሻሿሼݏ ሻሽݏ ൅ ሼ۴തሺݎ,  ሻሽ (3.138)ݏ
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									ሼ܇ഥሺݎ, ሻሽݏ ൌ ෍ ,ݎഥሺ௠ሻሺ܃௠ൣܥ sሻ൧

଺

௠ୀଵ

൅ ሼ܄ഥሺݎ, sሻሽ (3.139) 

 

where ൣ܃ሺ௠ሻ൧ are linearly independent complementary solutions. For IVPs mth 

component is equal to 1, whereas all the others are 0. ሼ܄ሺݎ,  is the particular	ሻሽݏ

solution with all 0 initial conditions. For the numerical solution of the above 

system of equations the RK5 algorithm is chosen. The solutions can be calculated 

for any desired number of collocation points through the radial direction. 

Free vibration analysis is considered as a special case of forced vibration. 

In order to carry out the natural frequencies of the considered structures external 

loads and  ሼ܄ሺݎ,  ሻሽ are assumed to be zero and the Laplace parameter is replacedݏ

with “iω”.  To obtain the values of ܥ௠ from the boundary conditions, simultaneous 

equations are carried out and the matrix of their coefficients is performed. Since the 

mass and stiffness matrix of the system are not obtained separately by the 

presented procedure the eigenvalues and eigenvectors of the problem are not 

calculated. Thus, the values of ω which make the determinant of coefficient’s 

matrix zero are the natural frequencies of the structure.  

 

3.3.4. Effect of Damping  

 To determine the viscoelastic behavior of the 2D-FG thick circular and 

annular plates the Kelvin damping model is used.  The elastic viscoelastic analogy 

Boley and Weiner (2012) is used to treat the internal viscoelastic damping case. 

The relationship between deviatoric components of stress (ߪ௜௝) and strain (݁௜௝) for 

the Kelvin viscoelastic model is: 

 

௜௝ߪ									 ൌ ܩ2 ቆ݁௜௝ ൅ ݃
݀݁௜௝
ݐ݀

ቇ (3.140) 
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In order to investigate the viscoelastic transient response of the considered 

structures, elastic constant E is as follows: 

 

,ݎ௩ሺܧ									 ሻݖ ൌ ,ݎሺܧ ሻሺ1ݖ ൅  ሻ  (3.141)ݏ݃

 

In this equations, Ev is viscoelastic constant, g is the coefficient of damping given 

by Temel et al. (2004). 

 In ANSYS, many forms of damping are available. In this thesis, mass 

damping is ignored. The coefficient of damping, g, is calculated from values of ξ 

and ω1 by g =β= 2 ξ/ ω1.  ω1 is the first fundamental frequency of the structure.  

 

3.3.5. Numerical Inverse Laplace Transform Algorithm  

 To retransfer the obtained results from the Laplace domain to the time 

domain the modified Durbin’s algorithm is employed. This algorithm is developed 

from Durbin’s numerical inverse Laplace transform method (Durbin (1974), Temel 

and Şahan (2013), Eratlı et al. (2014)). The equations for Durbin’s algorithm are 

given by: 

 

									݂൫ݐ௝൯ ≅
2݁௔௝∆௧

ܶ
൥െ

1
2
ܴ݁ሼܨതሺܽሻሽ

൅ ܴ݁ ൝෍൫ܣሺ݇ሻ ൅ ݅ ሺ݇ሻ൯݁ቀ௜ܤ
మഏ
ಿ
ቁ௝௞

ேିଵ

௞ୀ଴

ൡ൩ 

(3.142) 

 

ሺ݇ሻܣ									 ൌ෍ܴ݁ ൜ܨത ൬ܽ ൅ ݅ ሺ݇ ൅ l ܰሻ
ߨ2
ܶ
൰ൠ

௅

௟ୀ଴

 (3.143) 
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ሺ݇ሻܤ									 ൌ෍݉ܫ ൜ܨത ൬ܽ ൅ ݅ ሺ݇ ൅ l ܰሻ
ߨ2
ܶ
൰ൠ

௅

௟ୀ଴

 (3.144) 

 

where, i is the complex number, T is sampling time interval, N is the total number 

of equidistant sampling points (N=2m : m being integer), ݏ௞ ൌ ܽ ൅  is kth ܶ/ߨ2݇݅

Laplace transform parameter, tj=j∆t=jT/N,  (j=0,1,2,….N-1). In Eq. (3.142), the 

second part of the equality between the brackets is 

 

									൝෍൫ܣሺ݇ሻ ൅ ሺ݇ሻ൯݁ቀ௜ܤ	݅
మഏ
ಿ
ቁ௝௞

ேିଵ

௞ୀ଴

ൡ (3.145) 

 

calculated by using a Fast Fourier Transform (FFT) sub-program ((Brigham, 

1974)). Eq. (3.142) can also be modified as: 

 

									݂൫ݐ௝൯ ≅
2݁௔௝∆௧

ܶ
൥െ

1
2
ܴ݁ሼܨതሺܽሻሽ ൅ ܴ݁ ൝෍ሺܨതሺݏ௞ሻܮ௞ሻ݁

ቀ௜
మഏ
ಿ
ቁ௝௞

ேିଵ

௞ୀ଴

ൡ൩ 	 (3.146) 

 

where, each term of discrete values that is calculated in the Laplace domain is 

modified by multiplying them with Lanczos (Lk)  factor. These factors are given 

by: 

 

௞ܮ									 			 ∶ 			 ൝
ൌ 1																				 , ݇ ൌ 0

ൌ ܵ݅݊ ൬
ߨ݇
ܰ
൰ ൬

ߨ݇
ܰ
൰൘ , ݇ ൐ 0

 (3.147) 

 

In the modified inverse Laplace transform (Eq. (3.146)) which is obtained 

by multiplying the Lk factor, calculating the ܣሺ݇ሻ and	ܤሺ݇ሻ terms are not required. 
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Therefore, this method requires less computation. Also, the second part of Eq. 

(3.146) is calculated with the aid of the FFT algorithm. 

It should be noted that the selection of the appropriate values of parameters 

N, a and T are critical in order to achieve the desired accuracy in the inverse 

transform. In the literature, it is indicated that setting the value of T and choosing 

the value of a multiplied by T(aT) in between 5≤aT≤10 yields the value of a 

necessary for the required precision. For the numerical examples presented in this 

paper the value of ‘aT’ is taken as ‘6’. 
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4. RESULTS AND DISCUSSIONS 

 

In this section, numerical results of the axisymmetric bending, free 

vibration, damped and undamped transient response of 2D-FG solid circular and 

annular plates are presented for various boundary conditions, volume fraction 

indices and thickness functions. Comparisons are presented with available 

literature and ANSYS (2013) in order to validate the results of the suggested 

method. 

 

4.1. Axisymmetric Bending of 2D FG Mindlin-Reissner Circular Plates  

4.1.1. FG through the Thickness Direction  

Consider a solid FG circular plate of constant thickness h and radius ro 

subjected to uniform transverse load (݌௭ሻ. To verify the efficiency and accuracy of 

the model proposed, FG solid circular plate made of Aluminum/Zirconi (ܧ௥ ൌ

0.396	; ݒ ൌ 0.288) is considered as in Reddy et al. (1999) and Saidi et al. (2009). 

 ௥ describes the ratio of the modulus of elasticity of Aluminum and Zirconi. Theܧ

boundary conditions are as in Eqs. (3.68 – 3.73). Non-dimensional maximum 

vertical displacement of clamped, simply supported and roller supported circular 

plates can be obtained by: 

 

෭ݓ													 ൌ
௖ܦ64

௠௔௫ݓ଴ସݎ௭݌
௖ܦ	; ൌ

௖݄ଷܧ

12ሺ1 െ ଶሻݒ
 (4.1) 

 

Maximum vertical displacements are presented for various boundary conditions, 

thickness radius ratios and several values of ߣ௭. Obtained results are compared with 

exact results which were given by Reddy et al. (1999), those of Saidi et al. (2009) 

and results of ANSYS in Tables (4.1 – 4.3). To model this problem in ANSYS, 100 

layers are defined through the thickness of the plate.  Mechanical properties of 

those layers vary gradually through the thickness direction based on power law 

form.  
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Table 4.1. Comparison of the non-dimensional deflection, ݓ෭ , v = 0.288 , Er = 0.396 
(Er = Em/Ec) and λr = 0 

Support 

Type 
λz References 

Thickness-radius Ratio 

0.05 0.1 0.2 

Clamped  

0 

Exacta 2.5540 2.6390 2.9790 

Saidi et al. (2009) 2.5535 2.6382 2.9748 

ANSYS 2.5536 2.6387 2.9793 

Present Study 2.5541 2.6400 2.9804 

RE 3.92E-05 3.79E-04 4.70E-04 

2 

Exacta 1.4020 1.4440 1.6130 

Saidi et al. (2009) 1.4020 1.4429 1.6063 

ANSYS 1.4048 1.4469 1.6149 

Present Study 1.4035 1.4458 1.6147 

RE 1.07E-03 1.25E-03 1.05E-03 

6 

Exacta 1.2200 1.2570 1.4040 

Saidi et al. (2009) 1.2196 1.2552 1.3969 

ANSYS 1.2229 1.2592 1.4045 

Present Study 1.2213 1.2581 1.4059 

RE 1.07E-03 8.75E-04 1.35E-03 

a: Reddy et al. (1999) 
 

In this problem, the shear correction factor ݇௦ is taken to be 5 6.⁄ 	It can be 

clearly observed in Tables (4.1 – 4.3)  that the results of the presented method are 

in excellent agreement with those of the literature for any type of boundary 

condition. Relative error (RE) is calculated by: 

 

													RE ൌ ฬ
Exact െ Peresent Study

Exact
ฬ (4.2) 
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Table 4.2 Comparison of the non-dimensional deflection, ݓ෭ , v = 0.288 , Er = 0.396 
(Er = Em/Ec) and λr = 0 

Support 

Type 
λz References 

Thickness-radius Ratio 

0.05 0.1 0.2 

Simply 

Supported 

0 

Exacta 10.3960 10.4810 10.8220 

Saidi et al. (2009) 10.3940 10.4790 10.8200 

ANSYS 10.3960 10.4812 10.8216 

Present Study 10.3985 10.4818 10.8231 

RE 2.40E-04 7.63E-05 1.02E-04 

2 

Exacta 5.4970 5.5390 5.7080 

Saidi et al. (2009) 5.4969 5.5382 5.7028 

ANSYS 5.4588 5.5001 5.6994 

Present Study 5.5025 5.5452 5.7158 

RE 1.00E-03 1.12E-03 1.37E-03 

6 

Exacta 4.8970 4.9460 5.0940 

Saidi et al. (2009) 4.8968 4.9445 5.0874 

ANSYS 4.8749 4.9158 5.0612 

Present Study 4.9140 4.9510 5.0990 

RE 3.47E-03 1.01E-03 9.82E-04 

a: Reddy et al. (1999) 
 

Analyzing these results reveals that the displacement values obtained by the 

present study are closer to exact values than those by ANSYS. For high values of 

thickness-radius ratio and ߣ௭ accuracy of the results of ANSYS decreases. The 

influence of the thickness to radius ratio on the vertical deflection of clamped plate 

is greater than simply and roller supported plates. Shear correction factor, ݇௦ , is 

proposed as 5 6⁄  by Reissner and ߨଶ 12⁄  by Mindlin ( see Washizu (1975)).  
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Table 4.3 Comparison of the non-dimensional deflection, ݓ෭ , v = 0.288 , Er = 0.396 
(Er = Em/Ec) and λr = 0 

Support 

Type 
λz References 

Thickness-radius Ratio 

0.05 0.1 0.2 

Roller 

Supported  

0 

Exacta 10.3960 10.4810 10.8220 

Saidi et al. (2009) 10.3960 10.4810 10.8220 

ANSYS 10.3960 10.4812 10.8216 

Present Study 10.3985 10.4818 10.8231 

RE 2.40E-04 7.63E-05 1.02E-04 

2 

Exacta 5.7140 5.7560 5.9250 

Saidi et al. (2009) 5.7133 5.7546 5.9194 

ANSYS 5.6845 5.7265 5.8945 

Present Study 5.7184 5.7611 5.9297 

RE 7.70E-04 8.86E-04 7.93E-04 

6 

Exacta 4.9700 5.0070 5.1550 

Saidi et al.  (2009) 4.9700 5.0058 5.1489 

ANSYS 4.9484 4.9847 5.1299 

Present Study 4.9557 5.0127 5.1599 

RE 2.88E-03 1.14E-03 9.51E-04 

a: Reddy et al. (1999) 
 

To model the considered plate in ANSYS, SHELL209 element is used. The 

plate is meshed into 200 elements in radial direction. This shell element has three 

nodes with three degrees of freedom (translation in x and y directions and rotation 

about the z- axis) in each node. The y-axis is the symmetry axis.  

 

4.1.2. FG through the Radial Direction  

 Consider a RFG circular plate of uniform thickness and	ݎ௢ ൌ 5	m subjected 

to transverse uniform load of ݌௭ ൌ 10	N/mଶ. The material properties are assumed 

to be graded only in the radial direction according to Eq. (3.7). Maximum vertical 

deflection results of clamped, simply supported and roller supported plate are 
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carried out for various values of ߣ௥ and several thickness to radius ratios. Since 

there are no available results in the literature for the bending response of RFG thick 

circular plates, obtained results are compared with those of ANSYS. Comparison is 

tabulated in Table (4.4.).  

 

Table 4.4 Comparison of the maximum deflection, wmax x 10-7 (m), of clamped, 
simply and roller supported moderately thick RFG circular plates (λz=0) 

Support 

Type 
λr References 

Thickness-radius Ratio 

0.05 0.1 0.2 

Clamped  

1 
ANSYS 7.7970 1.0310 0.1463 

Present Study 8.0130 1.0370 0.1470 

2 
ANSYS 7.4820 0.9673 0.1369 

Present Study 7.5340 0.9740 0.1379 

3 
ANSYS 7.2400 0.9355 0.1322 

Present Study 7.2990 0.9432 0.1333 

Simply 

Supported 

1 
ANSYS 29.9200 3.7750 0.4892 

Present Study 30.0600 3.7930 0.4916 

2 
ANSYS 27.4000 3.4570 0.4482 

Present Study 27.5300 3.4750 0.4504 

3 
ANSYS 26.3300 3.3230 0.4306 

Present Study 26.4400 3.3360 0.4324 

Roller  

Supported 

1 
ANSYS 29.9200 3.7750 0.4892 

Present Study 30.0600 3.7930 0.4916 

2 
ANSYS 27.4000 3.4570 0.4482 

Present Study 27.5300 3.4740 0.4504 

3 
ANSYS 26.3300 3.3230 0.4306 

Present Study 26.4400 3.3360 0.4324 

 

In this case, the plate is also divided into 200 SHELL209 elements in the 

radial direction. To define the RFG materials 200 layers are defined in the radial 

direction. Variation form of the mechanical properties of these layers is as in Eq. 
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(3.7). In this problem, the shear correction factor ݇௦ is taken to be ߨଶ 12.⁄  The 

boundary conditions are given in Eqs. (3.68 – 3.73). 

It is seen in Table 4.4. that the results of the present model are in excellent 

agreement with the results of ANSYS. The effect ߣ௥	index on the vertical 

displacement of the clamped plate is less than on simply and roller supported RFG 

plates. As may be expected, comparison of results shows that increasing the 

  .index and thickness of the RFG plates, decrease the vertical deflection	௥ߣ

 

4.1.3. 2D-FG Circular Plate with Variable Thickness 

 The axisymmetric bending response of a 2D-FG circular plates is 

investigated. The plate is considered to have non-uniform thickness. Mechanical 

properties of the plate are considered to vary both in radial and thickness direction 

by a power law as given in Eq. (3.7).  The radial coordinate dependent function of 

the thickness is given by Eq. (3.9).  The radius of the plate, shear correction factor 

and the transverse load values are as in previous cases. Maximum vertical 

deflection values of the plate are obtained for various boundary conditions, ߣ௥, 

ሺ݄௜	௛values. The thickness of the plate is considered to beߣ and	௭ߣ ൌ 2	mሻ in inner 

radii 	and ሺ݄଴ ൌ 1	mሻ at outer radius.  

The presented results for maximum vertical deflection are listed in Tables 

(4.5 – 4.6) for different volume fraction exponents. Furthermore, the influence of 

thickness variation functions on the axisymmetric response of 2D-FG solid circular 

plates is investigated. As expected, tabulated results demonstrate that material 

gradient indices and geometric constant has significant effects on the deflection of 

2D-FG plates. 
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Table 4.5 Maximum deflection wmax x 10-9 (m) of clamped moderately thick 2D-FG 
circular plate. 

λr λz 
Geometric constant ( λh) 

1 2 3 10 

0 

0 8.2880 8.2690 8.7470 8.9160 

2 2.4270 2.5300 2.5660 2.6170 

4 2.0820 2.1690 2.2000 2.2430 

6 1.9330 2.0140 2.0420 2.0820 

1 

0 6.7690 7.0480 7.1450 7.2840 

2 2.2330 2.3280 2.3600 2.4070 

4 1.9350 2.0170 2.0450 2.0860 

6 1.8050 1.8810 1.9070 1.9450 

2 

0 6.3290 6.5900 6.6810 6.8100 

2 2.2170 2.2610 2.3300 2.3390 

4 1.8870 1.9660 1.9940 2.0330 

6 1.7630 1.8370 1.8620 1.8990 

3 

0 6.1150 6.3670 6.4540 6.5790 

2 2.1380 2.2280 2.2600 2.3040 

4 1.8630 1.9410 1.9680 2.0070 

6 1.7410 1.8140 1.8400 1.8760 

 

Moreover, the variations of vertical deflection and rotation (z = 0) along 

the radial direction are depicted in Figures (4.1 – 4.2) only for the clamped 2D-FG 

circular plate. According to Figures (4.1) and Tables (4.5 – 4.6) the deflection of 

the plate decreases as ߣ௥ and ߣ௭ increase. This response of the plate is related to the 

resulting increase in Young’s modulus. But increasing the geometric constant	ߣ௛, 

gives rise to the increase of the deflection.  
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Table 4.6. Maximum deflection  wmax x 10-8 (m) of simply supported moderately 
thick 2D-FG circular plate. 

λr λz 
Geometric constant ( λh) 

1 2 3 10 

0 

0 2.0430 2.1780 2.2260 2.2960 

2 0.5665 0.6040 0.6174 0.6367 

4 0.5054 0.5391 0.5510 0.5683 

6 0.5759 0.5076 0.5188 0.5351 

1 

0 1.5670 1.6710 1.7070 1.7600 

2 0.5117 0.5458 0.5578 0.5753 

4 0.4607 0.4914 0.5023 0.5181 

6 0.4356 0.4647 0.4750 0.4899 

2 

0 1.4320 1.5260 1.5390 1.6080 

2 0.4932 0.5260 0.5376 0.5544 

4 0.4453 0.4749 0.4855 0.5007 

6 0.4217 0.4497 0.4597 0.4741 

3 

0 1.3700 1.4600 1.4920 1.5390 

2 0.4844 0.5166 0.5280 0.5445 

4 0.4379 0.4671 0.4774 0.4924 

6 0.4150 0.4426 0.4524 0.4667 

 

As it can be observed in Figure (4.2), plates with higher volume fraction 

exponents through radial and thickness directions have smaller rotation angles. 

Furthermore, the impact of ߣ௥ on the axisymmetric response of 2D-FG solid 

circular plates is less noticeable than	ߣ௭. 
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Figure 4. 1 Deflection of the clamped plate 
 

 
Figure 4. 2. Rotation of the clamped plate 

 

4.2. Axisymmetric bending of 2D-FG Mindlin-Reissner Annular Plates  

4.2.1. 2D-FG Annular Plate with Uniform Thickness 

 Consider a 2D-FG annular plate with inner radii of	ݎ௜ ൌ 1	m, outer radius 

of ݎ௢ ൌ 5	m and constant thickness of ݄ሺݎሻ ൌ 1	m,	subjected to uniform transverse 

load of	݌௭ ൌ 10	N/mଶ. Properties of constituent materials, two different metal and 

two different ceramics, are given in Table (3.1). The influence of power law 

exponents (ߣ௥,  ) and boundary conditions on the axisymmetric bending behavior	௭ߣ	
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of the annular plates is investigated. By virtue of the fact that there is lack of results 

in the available literature for the axisymmetric bending response of 2D–FG annular 

plates, analysis results are compared with those of ANSYS. To investigate the 

applicability of the presented model axisymmetric bending response is studied for 

several cases.  

 

Table 4.7. Comparison of the maximum deflection, shear force and bending 
moment of C – C supported moderately thick 2D-FG annular plate. 

λr λz Method 

Results 

wmax ൈ 10ିଵ଴  

(m) 

Qmax  

(N) 

Mmax  

(N.m) 

1 

2 

ANSYS (20 x 100 layers) 5.215  38.69 21.40 

ANSYS (40 x 200 layers) 5.269  38.71 21.43 

Present Study 5.257  38.63 21.34 

4 

ANSYS (20 x 100 layers) 4.539 38.56 21.26 

ANSYS (40 x 200 layers) 4.601 38.60 21.28 

Present Study 4.577  38.49 21.17 

6 
ANSYS (40 x 200 layers) 3.987 37.65 20.04 

Present Study 4.117  38.38 21.03 

2 

2 Present Study 5.125  38.63 21.15 

4 Present Study 4.475  38.49 21.01 

6 Present Study 4.069  37.96 20.40 

3 

2 Present Study 5.062  38.56 21.01 

4 Present Study 4.427  38.43 20.88 

6 Present Study 4.018  37.85 20.32 

 

To model the 2D-FG annular plates in ANSYS, a large number of layers 

are required through the thickness and radial directions. In this study, two different 

models are generated in ANSYS. In the first model, the considered plate is divided 

into 20 layers through the thickness and 100 layers through the radial direction. In 
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the second model, the plate is divided into 40 layers through the thickness and 200 

layers through the radial direction. It must be noted that for each layer a different 

material is defined in ANSYS.  

 

Table 4.8. Comparison of the maximum deflection, shear force and bending   
moment of C – S supported moderately thick 2D-FG annular plate. 

λr λz Method 

Results 

wmax ൈ 10ିଵ଴  

(m) 

Qmax  

(N) 

Mmax  

(N.m) 

1 

2 

ANSYS (20 x 100 layers) 9.537 54.22 32.28 

ANSYS (40 x 200 layers) 9.443 54.25 32.32 

Present Study 9.471 54.21 33.23 

4 

ANSYS (20 x 100 layers) 8.445 54.51 33.78 

ANSYS (40 x 200 layers) 8.322 54.52 33.80 

Present Study 8.341 54.45 33.66 

6 
ANSYS (40 x 200 layers) 7.400 54.08 32.64 

Present Study 7.526 54.51 33.75 

2 

2 Present Study 9.176 54.08 32.85 

4 Present Study 8.108 54.33 33.30 

6 Present Study 7.463 54.14 32.90 

3 

2 Present Study 9.040 53.97 32.60 

4 Present Study 8.000 54.22 33.07 

6 Present Study 7.392 54.10 32.86 

 

Properties of materials are graded based on Eq. (3.7). The vertical 

deflection, bending moments and shear forces of the considered plate are carried 

out for clamped – clamped supported (C – C), clamped – simply supported (C – S), 

simply – clamped supported (S – C), simply– simply supported (S – S), and 

clamped – free (C -  F) boundary conditions. The numerical results of the presented 

approach and ANSYS are listed in Tables (4.7 – 4.11). Boundary conditions are 
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given in Eqs. (3.74 – 3.83). In this problem, the shear correction factor ݇௦ is taken 

to be ߨଶ 12.⁄  

 

Table 4.9. Comparison of the maximum deflection, shear force and bending 
moment of  S – C supported moderately thick 2D-FG annular plate. 

λr λz Method 

Results 

wmax ൈ 10ିଵ଴  

(m) 

Qmax  

(N) 

Mmax  

(N.m) 

1 

2 

ANSYS (20 x 100 layers) 7.142 30.93 13.05 

ANSYS (40 x 200 layers) 7.066 30.89 13.09 

Present Study 7.080 30.87 13.10 

4 

ANSYS (20 x 100 layers) 6.280 30.62 13.24 

ANSYS (40 x 200 layers) 6.183 30.58 13.27 

Present Study 6.191 30.58 13.28 

6 
ANSYS (40 x 200 layers) 5.336 29.99 13.67 

Present Study 5.563 30.41 13.37 

2 

2 Present Study 6.882 30.91 13.02 

4 Present Study 6.037 30.61 13.20 

6 Present Study 5.466 30.15 13.50 

3 

2 Present Study 6.788 30.88 13.01 

4 Present Study 5.963 30.58 13.91 

6 Present Study 5.399 30.04 13.58 
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Table 4.10. Comparison of the maximum deflection, shear force and bending 
moment of  S – S supported moderately thick 2D-FG annular plate. 

λr λz Method 

Results 

wmax ൈ 10ିଽ  

(m) 

Qmax  

(N) 

Mmax  

(N.m) 

1 

2 

ANSYS (20 x 100 layers) 1.380 45.74 16.69 

ANSYS (40 x 200 layers) 1.368 45.74 16.62 

Present Study 1.366 45.73 16.59 

4 

ANSYS (20 x 100 layers) 1.250 45.79 16.62 

ANSYS (40 x 200 layers) 1.248 45.80 16.68 

Present Study 1.244 45.77 16.58 

6 
ANSYS (40 x 200 layers) 1.166 45.60 16.60 

Present Study 1.110 45.77 16.58 

2 

2 Present Study 1.319 45.66 16.66 

4 Present Study 1.185 45.70 16.64 

6 Present Study 1.094 45.53 16.69 

3 

2 Present Study 1.298 45.58 16.70 

4 Present Study 1.168 45.63 16.68 

6 Present Study 1.084 45.49 16.69 

 

As can be seen in Tables (4.7 – 4.11), comparison of the maximum 

deflections, shear forces and bending moments show a very good agreement with 

those of ANSYS for several boundary conditions and volume fraction exponents.  

To obtain reliable accurate results in ANSYS, an appropriate number of 

graded layers in thickness and radial direction of the plate is required. Distinct 

material properties should be defined for each layer. For instance, 2000 different 

materials are required to generate the model of the plate with 20 layers through the 

thickness and 100 layers through the axial direction (20 x 100 layers) and 8000 

materials for the plate with (40 x 200) layer. Defining such a large number of 
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materials is a time-consuming process for examining the axisymmetric bending 

response of 2D-FG plates of uniform thickness. 

 

Table 4.11. Comparison of the maximum deflection, shear force and bending 
moment of  C – F supported moderately thick 2D-FG annular plate. 

λr λz Method 

Results 

wmax ൈ 10ି଼  

(m) 

Qmax  

(N) 

Mmax  

(N.m) 

1 

2 

ANSYS (20 x 100 layers) 1.502 120.00 155.86 

ANSYS (40 x 200 layers) 1.482 120.00 155.83 

Present Study 1.467 120.00 155.80 

4 

ANSYS (20 x 100 layers) 1.322 120.00 155.64 

ANSYS (40 x 200 layers) 1.297 120.00 155.60 

Present Study 1.279 120.00 155.60 

6 
ANSYS (40 x 200 layers) 1.121 120.00 150.81 

Present Study 1.144 120.00 155.40 

2 

2 Present Study 1.423 120.00 155.10 

4 Present Study 1.246 120.00 154.90 

6 Present Study 1.146 120.00 153.80 

3 

2 Present Study 1.407 120.00 154.80 

4 Present Study 1.233 120.00 154.50 

6 Present Study 1.138 120.00 153.70 

 

By infusing the suggested procedure to the governing equations of the 

problem, axisymmetric bending behavior of 2D-FG plates can be carried out in a 

simple and efficient manner. Comparison of the results demonstrates that as the 

number of layers increases, results of ANSYS approaches to those of the presented 

procedure. This demonstrates the accuracy and applicability of the current method. 

As stated in the previous section,		ߣ௭ has a more significant effect on the 

considered problem. For this reason, then plates must be divided into much more 



4. RESULTS AND DISCUSSIONS                             Ahmad Reshad NOORI 

59 

layers in the thickness direction for higher values of 	ߣ௭ in ANSYS.  It should be 

emphasized that the presented approach is equally suitable for arbitrary functions 

of FGMs.  

 

4.2.2. 2D-FG Annular Plate with Variable Thickness 

 Consider an annular plate of the previous section once again with the same 

loading.   

 

Table 4.12. Maximum deflection, ݓ௠௔௫ ൈ	10ିଽ	,  of C – C supported moderately 
thick 2D-FG annular plate. 

λr λz 
Geometric constant ( λh) 

1 2 3 10 

0 

0 1.0630 1.0910 1.1010 1.1140 

2 0.2912 0.2994 0.3021 0.3061 

4 0.2514 0.2584 0.2608 0.2642 

6 0.2358 0.2423 0.2445 0.2476 

1 

0 0.8276 0.8494 0.8569 0.8675 

2 0.2638 0.2711 0.2736 0.2772 

4 0.2302 0.2365 0.2387 0.2418 

6 0.2081 0.2138 0.2158 0.2186 

2 

0 0.7804 0.8008 0.8078 0.8178 

2 0.2574 0.2646 0.2670 0.2705 

4 0.2253 0.2315 0.2336 0.2366 

6 0.2157 0.2113 0.2133 0.2160 

3 

0 0.7580 0.7758 0.7846 0.7942 

2 0.2544 0.2614 0.2638 0.2672 

4 0.2229 0.2290 0.2311 0.2341 

6 0.2032 0.2087 0.2106 0.2133 
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As mentioned above, the plate is assumed to be made of two different 

metals and two different ceramics as given in Table (3.1). The plate has a non-

uniform thickness which varies through the radial direction according to a power 

law of a linear function as given by Eq. (3.9).  The thickness of the plate is  

݄௜ ൌ 2	m at ݄݁ݐ inner edge and ݄଴ ൌ 1	m at the outer edge. By applying the 

current method, static analysis is performed to show the influences of	ߣ௥, ߣ௭	and 

  .exponents on the axisymmetric bending response of 2D-FG annular plates	௛ߣ

 

Table 4.13.  Maximum deflection, ݓ௠௔௫ ൈ	10ିଽ	,  of C – S supported moderately 
thick 2D-FG annular plate. 

λr λz 
Geometric constant ( λh) 

1 2 3 10 

0 

0 1.5820 1.6640 1.6650 1.6960 

2 0.4313 0.4491 0.4552 0.4639 

4 0.3750 0.3904 0.3957 0.4082 

6 0.3520 0.3663 0.3712 0.3782 

1 

0 1.1690 1.2140 1.2300 1.2520 

2 0.3841 0.3998 0.4052 0.4129 

4 0.3382 0.3518 0.3567 0.3634 

6 0.3063 0.3187 0.3229 0.3290 

2 

0 1.0900 1.1320 1.1470 1.1670 

2 0.3730 0.3882 0.3934 0.4008 

4 0.3294 0.3427 0.3473 0.3539 

6 0.3035 0.3157 0.3199 0.3259 

3 

0 1.0550 1.0950 1.1090 1.1290 

2 0.3678 0.3827 0.3878 0.3951 

4 0.3252 0.3383 0.3429 0.3493 

6 0.3004 0.3125 0.3167 0.3226 
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Obtained results are tabulated in Tables (4.12 – 4.16) for C – C, C – S, S – 

C, S – S and C – F plates. In this problem the shear correction factor ݇௦ is taken to 

be ߨଶ 12.⁄   

 

Table 4.14. Maximum deflection, ݓ௠௔௫ ൈ	10ିଽ	,  of S – C supported moderately 
thick 2D-FG annular plate. 

λr λz 
Geometric constant ( λh) 

1 2 3 10 

0 

0 1.3030 1.3470 1.3620 1.3840 

2 0.3579 0.3706 0.3751 0.3814 

4 0.3106 0.3216 0.3255 0.3310 

6 0.2912 0.3015 0.3050 0.3101 

1 

0 1.0320 1.0670 1.0790 1.0960 

2 0.3272 0.3389 0.3429 0.3487 

4 0.2867 0.2968 0.3004 0.3054 

6 0.2587 0.2679 0.2711 0.2756 

2 

0 0.9676 1.0000 1.0120 1.0280 

2 0.3186 0.3299 0.3339 0.3394 

4 0.2799 0.2898 0.2932 0.2981 

6 0.2542 0.2632 0.2663 0.2707 

3 

0 0.9357 0.9672 0.9781 0.9981 

2 0.3142 0.3254 0.3293 0.3348 

4 0.2764 0.2862 0.2896 0.2945 

6 0.2509 0.2597 0.2628 0.2672 
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Table 4.15. Maximum deflection, ݓ௠௔௫ ൈ	10ିଽ	,  of S – S suported moderately 
thick 2D-FG annular plate. 

λr λz 
Geometric constant ( λh) 

1 2 3 10 

0 

0 2.0190 2.1200 2.1550 2.2060 

2 0.5495 0.5780 0.5879 0.6022 

4 0.4850 0.5102 0.5190 0.5315 

6 0.4566 0.4803 0.4835 0.5003 

1 

0 1.5280 1.6030 1.6290 1.6660 

2 0.4947 0.5202 0.5290 0.5417 

4 0.4409 0.4636 0.4715 0.4829 

6 0.4000 0.4206 0.4277 0.4380 

2 

0 1.4150 1.4850 1.5090 1.5430 

2 0.4792 0.5038 0.5124 0.5246 

4 0.4283 0.4503 0.4580 0.4690 

6 0.3938 0.4141 0.4211 0.4312 

3 

0 1.3620 1.4290 1.4520 1.4850 

2 0.4716 0.4957 0.5041 0.5161 

4 0.4420 0.4437 0.4512 0.4620 

6 0.3696 0.4096 0.4166 0.4266 

 

Moreover, distributions of vertical displacement and rotations along the 

radial direction of the C – C and S – S supported plates are plotted in Figures (4.3 – 

4.6) for several volume fraction exponents and geometric constants. In order to 

demonstrate the impact of boundary conditions on the axisymmetric response of 

2D-FG plates the displacement and bending moment variations along the radial 

direction of the S – S, C – S, S –C and C – C supported plates are presented in 

Figures (4.7 – 4.8) for ߣ௥ ൌ ௭ߣ ,2 ൌ 4	and ߣ௛ ൌ 10. 
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Table 4.16. Maximum deflection, ݓ௠௔௫ ൈ	10ି଼	,  of C – F supported moderately 
thick 2D-FG annular plate. 

λr λz 
Geometric constant ( λh) 

1 2 3 10 

0 

0 1.4380 1.5010 1.5240 1.5580 

2 0.4222 0.4412 0.4482 0.4584 

4 0.3617 0.3799 0.3839 0.3926 

6 0.3357 0.3507 0.3562 0.3642 

1 

0 1.0010 1.0460 1.0630 1.0870 

2 0.3630 0.3795 0.3855 0.3944 

4 0.3170 0.3314 0.3367 0.3444 

6 0.2846 0.2975 0.3022 0.3091 

2 

0 0.9319 0.9735 0.9886 1.0160 

2 0.3515 0.3674 0.3732 0.3817 

4 0.3082 0.3221 0.3271 0.3346 

6 0.2845 0.2973 0.3019 0.3087 

3 

0 0.9077 0.9480 0.9626 0.9841 

2 0.3473 0.3629 0.3686 0.3770 

4 0.3049 0.3187 0.3237 0.3310 

6 0.2828 0.2954 0.3000 0.3068 

 

Remarkable effects of the volume fraction exponents and thickness 

variation constant on the axisymmetric bending behavior of the 2D-FG thick 

annular plates can be clearly observed in Tables (4.12 – 4.16). Gradually increasing 

of the ߣ௥ and ߣ௭ values decrease the deflection of the plate, but the deflection of the 

plate increases as ߣ௛ increases. The decrease of vertical displacement describes that 

increasing the power law exponents will raise the rigidity of the plate. 
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Figure 4. 3. Veritcal deflection of C-C supported annular plate 
 

 
Figure 4. 4. Rotation of C – C supported annular plate 
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Figure 4. 5. Vertical deflection of S – S supported annular plate 
 

 
Figure 4. 6. Rotation of S – S supported annular plate 
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Figure 4. 7. Vertical deflection for various boundary conditions 

 

 
Figure 4. 8. Bending moment for various boundary conditions 
 

As shown in Figures (4.3 – 4.4) the effect of ߣ௭ on the static response of 

plates is more noticeable. Furthermore, the influence of thickness variation on the 

static response of 2D-FG axisymmetric plates is illustrated in Figures (4.5 – 4.6). It 

can be carried out from these figures that increasing the ߣ௛ values leads to larger 

deflections and rotations. Figures (4.7 – 4.8) demonstrate that boundary conditions 
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have a remarkable impact on the axisymmetric response of 2D-FG annular plates. 

As may be expected, comparison of the results for various boundary conditions 

reveals that C – C supported plate has the minimum deflection and C – S supported 

has the maximum bending moment value. 

 

4.3. Free Vibration Analysis of 2D-FG Circular Plates  

4.3.1. Verification 

In order to verify the presented procedure for free vibration analysis of the 

2D-FG circular plates, two comparison studies are presented in this section.  

As a first case study, dimensionless free vibration characteristics of 

isotropic and FG circular plates of uniform thickness are obtained and compared 

with those of Gupta et al. (2007), Liew et al. (1998) and Alipour et al. (2010). 

Comparisons are presented in Table (4.17) for various thickness ratios, material 

gradient exponents and different boundary conditions. Material distribution is 

assumed to be exponential (Eqs. (3.1 – 3.2)).  

The dimensionless natural frequencies (Ωሻ are derived by 

 

														Ω ൌ ඨ
௢ସݎ଴݄௜ߩ

଴ܦ
߱ଶ			; ଴ܦ	 ൌ

଴݄௜ܧ
ଷ

12ሺ1 െ ሻݒ
 (4.3) 

 

It can be clearly seen in Table (4.17) that the dimensionless natural 

frequencies carried out by the presented approach are in excellent agreement with 

those of Gupta et al. (2007), Liew et al. (1998) and Alipour et al. (2010). In this 

case, the shear correction factor ݇௦ is taken to be ߨଶ 12.⁄  
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Table 4.17.  Comparison of non-dimensional natural frequencies (Ω) of FG circular 
plate ሺ	ߣ௭ ൌ 0ሻ 

Edge Condition ࢘ࣅ 
࢏ࢎ
࢕࢘

 
Alipour et al. 

(2010) 
Present Study Exact 

Clamped 

-0.5 0.1 9.2457 9.2451 9.2457 a 

-0.5 0.2 8.5944 8.5936 8.5944 a 

0 0.001 10.216 10.2155 10.216 b 

0 0.15 9.6290 9.6283 9.6290 b 

0 0.25 8.8070 8.8066 8.8070 b 

1 0.1 11.5285 11.5289 11.5285 a 

1 0.2 10.6954 10.6944 10.6954 a 

Simply 

Supported 

-0.5 0.1 4.7943 4.7938 4.7943 a 

-0.5 0.2 4.6748 4.6744 4.6748 a 

0 0.001 4.9350 4.9350 4.9350 b 

0 0.15 4.8440 4.8438 4.8440 b 

0 0.25 4.6960 4.6962 4.6960 b 

1 0.1 5.0784 5.0775 5.0784 a 

1 0.2 4.9623 4.9614 4.9623 a 

Free 

-0.5 0.1 9.1418 9.1431 9.1418 a 

-0.5 0.2 8.7607 8.7612 8.7607 a 

0 0.001 9.0030 9.0028 9.0030 b 

0 0.15 8.7100 8.7092 8.7100 b 

0 0.25 8.2670 8.2671 8.2670 b 

1 0.1 8.4697 8.4689 8.4697 a 

1 0.2 8.1251 8.1250 8.1251 a 

a: Gupta et al. (2007) 
b: Liew et al. (1998) 
 

As the second part of verification, the natural frequencies of radially FG, 

FG in the thickness direction and 2D-FG circular plate with clamped boundary 

condition are calculated and compared with the results of Liu and Lee (2000), Nie 

and Zhong (2007) and Kermani et al. (2012).  Comparisons are presented in Table 
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(4.18). The circular plate is considered with a radius of 1 m, and a thickness of 0.2 

m. The modulus of elasticity and mass density of the plate are assumed to have an 

exponential distribution (Eqs. (3.1 – 3.2)). Poisson’s ratio is considered to be 

constant. In this case, the shear correction factor ݇௦ is taken to be ߨଶ 12.⁄   

 

Table 4.18.  Comparison of non-dimensional natural frequencies (Ω) of FG circular 
plate.  

 Ω ࢘ࣅ ࢠࣅ
Liu and Lee 

(2000) 

Nie and Zhong 

(2007) 

Kermani et 

al. (2012) 

Present 

Study 

0 

0 
Ωଵ 0.097 --- 0.097 0.097 

Ωଶ 0.320 --- 0.320 0.316 

1 
Ωଵ --- --- 0.113 0.112 

Ωଶ --- --- 0.335 0.331 

1 

0 
Ωଵ --- 0.096 0.095 0.095 

Ωଶ --- --- 0.314 0.311 

1 
Ωଵ --- --- 0.110 0.109 

Ωଶ --- --- 0.329 0.327 

 

A good agreement of the present results and those of Liu and Lee (2000), 

Nie and Zhong (2007) and Kermani et al. (2012) in all cases can be seen from the 

Table 4.18. 

 

4.3.2. Free vibration of 2D-FG Circular Plates with Variable Thickness 

Free vibration behavior of 2D-FG circular plates is investigated. The plate 

is assumed to have variable thickness as shown in Figure 4.9. Mechanical 

properties of the plate is considered to vary both in radial and thickness direction 

by a power law form Eq. (3.7).  The radial coordinate dependent function of the 

thickness is given by Eq. (3.9).  The radius of the plate is 5 m,  and the shear 

correction factor is as in the previous case. Natural frequencies of the plate are 
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carried out for various boundary conditions, ߣ௥, ߣ௭	and ߣ௛values. The thickness of 

the plate is considered to be	ሺ݄௜ ൌ 2	mሻ in inner radii ܽ݊݀ ሺ݄଴ ൌ 1	mሻ at outer 

radius. Shear correction factor, ݇௦ , is proposed as 5 6⁄  by Reissner and ߨଶ 12⁄  by 

Mindlin ( see Washizu (1975)).  

 

 
Figure 4. 9. Illustration of thickness profile 
 

The calculated results of free vibration characteristics are listed in Tables 

(4.19 – 4.21) for different volume fraction exponents. Furthermore, the influence of 

thickness variation functions on the free vibration response of 2D-FG solid circular 

plates is investigated in details. As expected, tabulated results show that material 

gradient indices and geometric constant have significant influences on the natural 

frequencies of 2D-FG circular plates.  
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Table 4.19. Natural frequencies of 2D-FG circular plate (Clamped).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 97.7654 321.7721 593.5375 655.4763 882.6572 

0.25 108.7406 358.5332 629.9787 644.7632 939.1016 

1 101.7386 346.5102 630.2576 640.3068 924.2638 

2 

-0.25 154.5728 534.8401 999.0538 1146.9089 1498.9431 

0.25 178.8480 601.0351 1078.4434 1113.0296 1606.4530 

1 166.9131 578.8720 1064.2245 1119.3151 1577.2374 

4 

-0.25 163.7741 566.4712 1057.7519 1210.4915 1585.7969 

0.25 189.2995 636.5980 1146.5897 1172.2365 1699.2189 

1 176.6907 613.1693 1127.6311 1181.9823 1668.3239 

1 

0 

-0.25 87.7786 314.7163 586.2521 649.8939 875.1949 

0.25 101.0838 350.5478 625.2137 637.1889 931.7423 

1 94.5790 339.3342 623.0793 636.1949 916.9671 

2 

-0.25 157.8469 552.0312 1032.2885 1180.3303 1549.4577 

0.25 182.5225 619.4841 1111.4336 1148.5054 1659.5663 

1 170.4844 597.2185 1098.8439 1153.9274 1629.8080 

4 

-0.25 171.1172 593.8744 1109.4800 1265.0511 1664.3195 

0.25 197.5045 666.2320 1199.9322 1227.6035 1782.9145 

1 184.5621 642.3051 1182.2240 1236.8756 1750.7120 

2 

0 

-0.25 86.8850 312.3453 583.8808 639.0107 873.0649 

0.25 99.9174 348.0186 614.6437 635.2434 930.1598 

1 93.5821 336.8240 621.0421 625.6035 915.2645 

2 

-0.25 159.3229 557.8773 1043.5124 1189.3253 1566.2845 

0.25 184.1330 625.8195 1122.3908 1158.5248 1677.5588 

1 172.0623 603.4088 1110.8607 1162.9074 1647.5437 

4 

-0.25 173.9392 603.8072 1127.6895 1285.3811 1691.3852 

0.25 200.7084 677.0574 1219.6944 1246.9831 1811.8860 

1 187.6198 652.8661 1201.6452 1256.8002 1779.2333 
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Table 4.20. Natural frequencies of 2D-FG circular plate (Simply Supported).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 54.1022 272.8022 556.9002 655.4763 858.9251 

0.25 72.1165 327.1340 626.4580 629.9787 931.3211 

1 64.8330 306.6038 602.3207 640.3068 907.5765 

2 

-0.25 91.1040 448.0931 924.5472 1141.1407 1451.5566 

0.25 121.7538 541.6626 1034.4994 1111.1201 1587.0368 

1 109.4286 505.6470 1001.7619 1118.5235 1541.3087 

4 

-0.25 94.4780 474.8749 981.8837 1207.5408 1535.6572 

0.25 126.3946 574.5159 1105.6864 1169.4427 1679.5705 

1 113.5140 536.2968 1066.0435 1181.6113 1631.1718 

1 

0 

-0.25 52.5114 270.2822 552.9950 649.8639 853.8595 

0.25 69.9446 322.7501 621.0573 625.2137 925.0150 

1 62.7935 303.5259 597.9575 636.1949 902.1114 

2 

-0.25 94.0752 465.1475 958.1530 1174.6864 1503.5060 

0.25 125.6682 560.8964 1068.7717 1146.1650 1641.8393 

1 112.8994 524.3048 1036.7963 1153.2928 1595.3958 

4 

-0.25 99.6668 500.1531 1033.0662 1262.0606 1615.4680 

0.25 133.3237 603.6431 1160.4692 1223.9267 1765.2900 

1 119.6649 564.0479 1120.4094 1236.5618 1715.0622 

2 

0 

-0.25 52.5028 270.4200 553.0199 639.0107 853.6918 

0.25 69.8373 322.3127 614.6437 620.8085 924.5218 

1 62.7466 303.3287 597.9990 625.6035 902.0105 

2 

-0.25 95.3231 471.4881 970.3583 1183.5868 1521.4530 

0.25 127.2824 567.9688 1081.1023 1155.7154 1660.7627 

1 114.3758 531.1078 1049.6895 1162.2862 1614.1862 

4 

-0.25 101.7563 509.6091 1051.5648 1282.2575 1643.3494 

0.25 135.9854 614.5275 1180.6931 1243.4243 1795.1050 

1 122.1398 574.3928 1140.2505 1256.4216 1744.3995 
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Table 4.21. Natural frequencies of 2D-FG circular plate (Roller Supported).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 54.1022 272.8022 365.4292 556.9002 858.9251 

0.25 72.1165 327.1340 373.9717 626.4580 928.9249 

1 64.8330 306.6038 377.8451 602.3207 907.5765 

2 

-0.25 87.0727 447.1738 643.7305 927.8732 1448.7271 

0.25 116.6527 541.4631 657.2710 1055.9367 1578.3006 

1 104.7098 505.2650 664.5933 1010.3442 1541.1996 

4 

-0.25 92.3944 474.4192 677.0620 983.6415 1534.2352 

0.25 123.7560 574.4286 692.1207 1118.3731 1678.4874 

1 111.0750 536.1159 699.5498 1070.6453 1631.0732 

1 

0 

-0.25 52.5114 270.2822 387.5779 552.9950 853.8595 

0.25 69.9446 322.7501 395.9788 621.0573 925.0150 

1 62.7935 303.5259 400.4014 597.9575 902.1114 

2 

-0.25 90.4572 464.0172 669.1775 961.8985 1500.7932 

0.25 121.1131 560.5365 683.8342 1092.8707 1634.8213 

1 108.6698 523.7339 691.3837 1046.4392 1595.2924 

4 

-0.25 97.7181 499.5974 708.6503 1035.0899 1614.0377 

0.25 130.7794 603.4965 725.6216 1175.3025 1764.1150 

1 117.3663 563.7887 733.1391 1125.6579 1714.9556 

2 

0 

-0.25 52.5028 270.4200 389.1729 553.0199 853.6918 

0.25 69.8373 322.3127 396.8769 620.8085 924.5218 

1 62.7466 303.3287 401.5838 597.9990 902.0105 

2 

-0.25 91.8651 470.4271 677.9909 974.0098 1518.6518 

0.25 122.9346 567.6574 692.8641 1105.9289 1655.1957 

1 110.3358 530.5853 700.5160 1059.3120 1614.0216 

4 

-0.25 99.8665 509.0713 721.8479 1053.5277 1641.8449 

0.25 133.6050 614.3919 739.3582 1195.5598 1794.2549 

1 119.9311 574.1442 746.9499 1145.4067 1744.2585 
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The suggested scheme is applied to study the influences of various 

thickness profiles and the power law indices and different boundary conditions. 

Influences of the volume fraction exponents and thickness variation profile on the 

natural frequencies of the 2D-FG thick circular plates can be clearly seen in Tables 

(4.19 – 4.21). As may expected, the circular plate with convex thickness profile 

௛ߣ) ൌ 0.25) has the highest natural frequencies while the plate with concave 

thickness profile (ߣ௛ ൌ െ	0.25) has the lowest natural frequencies among 

compared cases. when the plate is radially FG (ߣ௭ ൌ 0), it is revealed that 

increasing the value of ߣ௥ decreases natural frequencies of the structure for the 

considered FGM model. When the plate is FG only through the thickness direction 

௥ߣ) ൌ 0), It can be concluded that an increase in the value of ߣ௭ leads to an 

increase in the natural frequencies of the structure. In 2D-FG circular plates 

gradually increasing of the ߣ௥ and ߣ௭ values increase the natural frequencies of the 

plate.  

 

4.4. Free Vibration Analysis of 2D-FG Annular Plates  

4.4.1. Verification 

This section contains two parts; firstly, results of the presented approach 

are validated with some available results in the literature. A simply supported – 

clamped 2D-FG annular plate is considered. (݄௜ ൌ 0.1	; ௢ݎ	 ൌ ௥ߣ	;1 ൌ ௭ߣ ൌ 1	ሻ. 

Natural frequencies of the considered plate are carried out for several ratios of 

inner radii/outer radii and compared with those results given by Kermani et al. 

(2012) based on 3D elasticity theory.  Comparisons are presented in Table (4.22). 

The modulus of elasticity and mass density of the plate vary exponentially (Eqs. 

(3.1 – 3.2)). Poisson’s ratio is considered to be constant. In this case, the shear 

correction factor ݇௦ is taken to be ߨଶ 12.⁄  Boundary conditions are given by Eqs. 

(3.76 – 3.77). Non-dimensional natural frequencies of the problem are carried out 

by Eq. (4.3).  
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Table 4.22. Comparison of non-dimensional natural frequencies (Ω) of FG annular 
plate.  

࢏࢘
࢕࢘

 Ω 
Kermani et al. 

(2012) 
Present Study 

0.1 
Ωଵ 0.057 0.056 

Ωଶ 0.151 0.149 

0.2 
Ωଵ 0.068 0.067 

Ωଶ 0.182 0.180 

0.3 
Ωଵ 0.084 0.083 

Ωଶ 0.226 0.224 

 

From Table (4.22), it is evident that the results of the proposed method are 

in a good agreement with the existing results. 

As the second part of verification, the free vibration response of the 2D-FG 

annular plates is examined and compared with the results of ANSYS to validate the 

efficiency and accuracy of the suggested approach.  

Consider a 2D-FG annular plate with inner radii of	ݎ௜ ൌ 1	m, outer radius 

of ݎ௢ ൌ 5	m and uniform thickness of ݄ሺݎሻ ൌ 1	m. The material properties, two 

different metal and two different ceramics, listed in Table (3.1) are used in the 

numerical computations. To investigate the applicability of the presented model, 

free vibration of the 2D-FG annular plates is examined for several cases.  

To generate the model of the considered plate in ANSYS, a large number 

of layers are required through the thickness and radial directions. In this section, 

the plate is divided into 40 layers through the thickness and 200 layers through the 

radial direction. It must be noted that for each layer a different material is defined 

in ANSYS. Defining such a large number of materials is a time-consuming 

process. To generate the finite element model of the considered problem 

SHELL209 element is used which is suitable for analyzing moderately thick 

axisymmetric plates. In analysis, shear correction factor, ݇௦, is taken to be 5/6. 
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Several comparison studies are carried out and presented in Tables (4.23 – 4.28). 

Boundary conditions of clamped – clamped annular plate are given by Eqs. (3.74 – 

3.75).  

 

Table 4.23. Comparison of natural frequencies of 2D-FG annular plate (C – C).  

 ௭ Methodߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 
ANSYS 238.9200 526.1880 717.6680 863.3420 1218.0000 

Present Study 238.9200 526.1885 717.6681 863.3419 1218.0000 

2 
ANSYS 399.0630 888.1480 1247.2100 1463.8200 2076.6400 

Present Study 399.4540 889.0698 1258.9959 1465.2809 2077.0358 

4 
ANSYS 423.4630 945.2820 1318.5600 1559.9200 2212.9500 

Present Study 422.3180 940.6610 1327.0234 1550.7501 2197.3500 

1 

0 
ANSYS 235.7880 520.9700 708.8820 857.2960 1211.1600 

Present Study 235.8051 520.9927 708.9220 857.3143 1211.1767 

2 
ANSYS 414.4380 924.4470 1293.4700 1525.6900 2161.0200 

Present Study 414.0554 920.5681 1296.9106 1517.0744 2149.4431 

4 
ANSYS 445.6640 995.1370 1385.4600 1642.7500 2327.6400 

Present Study 444.9982 989.5056 1390.9186 1630.5693 2309.2842 

2 

0 
ANSYS 230.1940 513.8470 694.2530 850.9420 1205.5800 

Present Study 230.0268 513.9429 694.4439 851.0209 1205.6423 

2 
ANSYS 416.8330 932.6390 1302.1700 1541.4300 2184.4800 

Present Study 416.4923 927.8085 1304.3378 1530.9283 2170.3069 

4 
ANSYS 451.8980 1009.8100 1405.5900 1667.7900 2363.6000 

Present Study 451.4262 1003.8466 1410.8890 1658.8213 2344.3603 

 

It can be seen from Table (4.23), that current results of the natural 

frequencies of clamped - clamped circular plates concur well with those obtained 

by ANSYS. 
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Boundary conditions of clamped – simply supported annular plate are 

given by Eqs. (3.78 – 3.79). 

 

Table 4.24. Comparison of natural frequencies of 2D-FG annular plate (C – S).  

 ௭ Methodߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 
ANSYS 173.5800 477.3510 717.6680 830.0840 1201.5800 

Present Study 173.5798 477.3509 717.6681 830.0843 1201.5833 

2 
ANSYS 289.6720 791.3760 1238.8600 1397.0800 2039.2600 

Present Study 290.2403 794.5349 1247.8620 1401.8038 2041.1460 

4 
ANSYS 305.5120 844.2400 1314.3300 1487.7900 2172.3500 

Present Study 305.3697 843.1452 1321.3360 1482.8788 2159.6300 

1 

0 
ANSYS 178.8260 477.8840 708.8820 828.2070 1197.4500 

Present Study 178.8000 477.8756 708.9222 828.2026 1197.4479 

2 
ANSYS 304.7330 828.3680 1280.0500 1463.9300 2124.8200 

Present Study 304.8440 827.2943 128.5000 1456.3375 2116.1099 

4 
ANSYS 324.4870 893.1280 1378.0600 1573.9100 2289.4700 

Present Study 324.7574 891.4167 1384.6194 1564.7139 2274.8480 

2 

0 
ANSYS 175.8550 473.6970 694.2530 824.5830 1193.9200 

Present Study 175.8528 473.7253 694.4439 824.6060 1193.9442 

2 
ANSYS 307.5060 837.9290 1287.4000 1481.2800 2149.5100 

Present Study 307.6683 835.6043 1292.5874 1471.3202 2138.5071 

4 
ANSYS 329.9900 908.1200 1397.0700 1600.1900 2326.6800 

Present Study 330.4043 905.8564 1404.5206 1589.7810 2311.3669 

 

We can observe from Table (4.24), that free vibration characteristic results 

of the presented approach and those of ANSYS are consistent. 

Boundary conditions of simply supported – clamped annluar plate are 

given by Eqs. (3.76 – 3.77). 
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Table 4.25. Comparison of natural frequencies of 2D-FG annular plate (S – C).  

 ௭ Methodߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 
ANSYS 207.4760 503.0360 717.6680 848.9070 1212.6700 

Present Study 207.4765 503.0356 717.6681 848.9069 1212.6693 

2 
ANSYS 344.3350 838.8930 1243.6600 1430.8900 2062.4900 

Present Study 345.2990 841.6073 1253.8509 1434.1850 2063.6941 

4 
ANSYS 363.9030 893.4320 1316.7400 1524.8300 2197.3000 

Present Study 363.9830 891.5533 1324.3640 1518.2931 2183.2511 

1 

0 
ANSYS 200.9040 495.4230 708.8820 841.2750 1205.0700 

Present Study 200.9377 495.4563 708.9220 841.3000 1205.0847 

2 
ANSYS 355.3830 872.4230 1289.8900 1489.2200 2146.3700 

Present Study 355.8811 870.4682 1293.4114 1483.3804 2135.1586 

4 
ANSYS 381.5630 939.1610 1383.4600 1603.1400 2310.2400 

Present Study 382.2569 936.3630 1389.0295 1594.2640 2293.2071 

2 

0 
ANSYS 197.2160 490.0030 694.2530 836.1190 1200.2000 

Present Study 197.2906 490.0957 694.4439 836.1954 1200.2528 

2 
ANSYS 358.0810 881.5470 1297.6900 1506.0300 2170.6600 

Present Study 358.5947 878.5034 1300.7741 1498.0900 2156.7959 

4 
ANSYS 387.4860 954.2030 1403.0000 1628.8700 2347.1100 

Present Study 388.3395 950.9621 1408.9010 1619.0999 2329.0859 

 

Table (4.25), demonstrates that current results and those of ANSYS are in a 

good agreement. 

Boundary conditions of simply supported – simply supported annular plate 

are given by Eqs. (3.80 – 3.81). 
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Table 4.26. Comparison of natural frequencies of 2D-FG annular plate (S – S).  

 ௭ Methodߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 
ANSYS 143.8670 449.7930 717.6670 814.4240 1195.1800 

Present Study 143.8674 449.7927 717.6681 814.4241 195.1752 

2 
ANSYS 242.4230 733.7110 1238.1200 1357.9000 2023.2300 

Present Study 243.1304 738.4166 1246.6384 1363.5960 2026.5600 

4 
ANSYS 252.4330 784.0040 1313.9100 1447.7000 2154.4000 

Present Study 252.9180 785.5360 13206.3840 1445.2113 2143.6929 

1 

0 
ANSYS 145.7010 447.9970 708.8820 811.0000 1190.3000 

Present Study 145.6914 447.9988 708.9220 811.0017 1190.3020 

2 
ANSYS 253.5295 768.3659 1284.5035 1416.4658 2100.3310 

Present Study 253.0400 767.4590 1279.6400 1420.8300 2108.6300 

4 
ANSYS 267.0510 828.2190 1377.8200 1528.8300 2269.8400 

Present Study 268.0153 829.3824 1384.3238 1523.4963 2256.6813 

2 

0 
ANSYS 144.1780 445.8930 694.2530 808.7460 1187.6600 

Present Study 144.1816 445.9140 694.4439 808.7635 1187.6778 

2 
ANSYS 255.7900 777.8370 1286.6400 1438.9000 2134.5600 

Present Study 256.3203 777.5170 1291.9686 1432.5270 2123.5854 

4 
ANSYS 272.0900 843.3820 1396.6300 1555.5100 2308.2600 

Present Study 273.1764 843.9909 1404.1741 1549.2213 2294.0745 

 

It is apparent from Table (4.26) that results of the presented scheme 

matches with those of finite element method. 

Boundary conditions of clamped – free annular plate are given by Eqs. 

(3.82 – 3.83). 
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Table 4.27. Comparison of natural frequencies of 2D-FG annular plate (C – F).  

 ௭ Methodߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 
ANSYS 47.0814 232.9450 373.4140 560.6510 914.7920 

Present Study 47.0814 232.9449 373.4142 560.6508 914.7918 

2 
ANSYS 75.6516 380.3310 659.5840 926.9050 1528.5500 

Present Study 76.1606 383.0451 661.5248 931.8354 1534.8980 

4 
ANSYS 80.3169 405.8760 691.9370 989.3450 1632.6900 

Present Study 80.7684 406.9116 693.7867 989.1787 1628.8288 

1 

0 
ANSYS 53.3090 243.7600 400.7230 567.0110 918.8750 

Present Study 53.2742 243.7002 400.5698 566.9655 918.8325 

2 
ANSYS 81.9138 404.0048 691.6611 972.2130 1594.8987 

Present Study 81.5164 402.4500 690.9740 972.0830 1593.6300 

4 
ANSYS 86.1643 432.1970 729.3580 1047.7100 1721.2900 

Present Study 86.7146 433.5191 731.0863 1046.9957 1718.2516 

2 

0 
ANSYS 53.0251 242.7810 399.8640 567.2220 920.0880 

Present Study 52.9869 242.7133 399.6913 567.1520 920.0060 

2 
ANSYS 82.4247 407.9620 697.7440 985.2730 1613.8300 

Present Study 82.8205 409.0267 699.1777 984.0336 1613.8694 

4 
ANSYS 87.4632 440.1680 741.0190 1066.3000 1750.3600 

Present Study 88.0368 441.3088 743.4840 1064.9939 1747.1716 
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Table 4.28. Comparison of natural frequencies of 2D-FG annular plate (F – C).  

 ௭ Methodߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 
ANSYS 92.7847 315.3700 559.5560 627.6540 971.8230 

Present Study 92.7847 315.3696 559.5557 627.6539 971.8233 

2 
ANSYS 149.3060 515.9140 976.8940 1040.7900 1626.9400 

Present Study 150.3153 519.0491 984.3466 1045.7440 1633.1726 

4 
ANSYS 158.5880 549.7180 1030.6600 1110.0200 1737.1200 

Present Study 159.4364 550.8570 1036.1362 1109.2837 1732.3256 

1 

0 
ANSYS 84.3015 303.2610 539.4860 615.7940 960.0110 

Present Study 84.3415 303.3170 539.5772 615.8415 960.0495 

2 
ANSYS 153.3993 535.4695 1013.4141 1080.6959 1689.7330 

Present Study 152.5130 535.4060 1011.4300 1083.4800 1697.8100 

4 
ANSYS 165.8440 577.8860 1087.5200 1167.0700 1827.3000 

Present Study 167.1301 578.5291 1091.6471 1163.9194 1817.6124 

2 

0 
ANSYS 83.9201 301.7910 533.7330 614.0020 958.5630 

Present Study 83.9708 301.8714 533.8956 614.0747 958.6188 

2 
ANSYS 153.9220 541.7240 1018.8000 1096.7800 1718.4800 

Present Study 154.7038 541.4431 1020.5838 1092.7922 1708.4355 

4 
ANSYS 168.2430 587.5700 1103.0200 1186.4300 1857.3000 

Present Study 169.5908 588.1563 1107.4078 1182.8630 1846.8551 

 

As outlined in the previous section, as the number of layers increases, 

results of ANSYS approaches to those of the presented procedure. To obtain 

accurate results in ANSYS, the plate needs to be divided to a large number of 

layers in the thickness and radial directions. Increasing material gradient indices 

increases the required number of layers to obtain accurate results.  

By infusing the suggested procedure to the Eqs. (3.133 – 3.137) and 

substituting the Laplace parameter with “iω”, free vibration behavior of 2D-FG 

thick annular plates can be carried out in a simple and efficient manner. This 
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demonstrates the accuracy and applicability of the current method. It should be 

emphasized that the presented approach is equally suitable for arbitrary functions 

of FGMs. By using the suggested approach considerable saving in computation 

time can be provided.  

 

4.3.2. Free vibration of 2D-FG Annular Plates with Variable Thickness 

Numerical computations given in the previous sections showed the 

validity, applicability and accuracy of the presented procedure. In this section, the 

suggested model will be applied to free vibration response of 2D-FG annular plate 

of variable thickness. Aslo, effects of the geometrical and material properties on 

the frequency parameters of the 2D-FG annular plates will be discussed in details.  

The plate is assumed to have variable thickness as shown in Figure 4.9. 

Mechanical properties of the plate is considered to vary both in radial and thickness 

direction by a power law form Eq. (3.7).  The radial coordinate dependent function 

of the thickness is given by Eq. (3.9).   

Consider a 2D-FG annular plate with inner radii of	ݎ௜ ൌ 1	m, outer radius 

of ݎ௢ ൌ 5	m. The shear correction factor ݇௦ is taken to be ߨଶ 12.⁄ . The thickness of 

the plate is considered to be	ሺ݄௜ ൌ 2	mሻ in inner radii ܽ݊݀ ሺ݄଴ ൌ 1	mሻ at outer 

radius. Natural frequencies of the plate are carried out for various boundary 

conditions, ߣ௥, ߣ௭	and ߣ௛values. 

The obtained natural frequencies are listed in Tables (4.29 – 4.34) for 

different volume fraction exponents. Furthermore, the influence of thickness 

variation functions on the free vibration response of 2D-FG annular plates is 

investigated in details. Boundary conditions are given by Eqs. (3.74 – 3.83). 
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Table 4.29. Natural frequencies of 2D-FG annular plate (C – C).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 267.5424 560.9236 732.7283 904.4027 1259.7803 

0.25 270.6771 574.4984 695.5696 938.1162 1172.8981 

1 269.4255 570.2079 708.1353 927.4146 1250.8238 

2 

-0.25 452.7248 953.0053 1279.3945 1541.0834 2158.0747 

0.25 462.5909 972.4833 1217.5203 1599.3529 2066.6968 

1 459.0705 967.1279 1237.3299 1580.9449 2162.6577 

4 

-0.25 477.9948 1008.3786 1351.7538 1630.9341 2281.9811 

0.25 487.8244 1033.2953 1284.5974 1695.6533 2170.3219 

1 484.2931 1025.6934 1306.7387 1674.7360 2285.5361 

1 

0 

-0.25 266.5758 557.4399 727.6532 899.5442 1253.9463 

0.25 269.6450 570.4844 691.0494 933.1827 1170.8247 

1 268.8230 567.1233 704.7205 922.7980 1247.4019 

2 

-0.25 469.8388 987.1593 1321.4775 1595.2174 2232.6339 

0.25 479.7167 1007.1664 1257.1653 1655.3870 2122.1888 

1 476.5199 1002.3668 1279.2616 1636.4277 2235.1584 

4 

-0.25 504.0411 1061.0023 1419.3242 1714.4811 2397.0421 

0.25 514.2826 1085.9213 1348.7457 1781.4401 2254.6846 

1 510.9813 1079.2144 1373.6652 1759.9377 2391.0981 

2 

0 

-0.25 260.2049 549.7878 712.8224 893.1091 1248.3209 

0.25 263.0513 562.2464 676.5315 927.4578 1164.5235 

1 262.3024 559.1899 690.1237 916.8506 1241.1455 

2 

-0.25 472.4702 994.6068 1329.3791 1609.6126 2254.0265 

0.25 482.1094 1014.1750 1264.5689 1670.5854 2137.5133 

1 478.9985 1009.6136 1286.8665 1651.3794 2254.2993 

4 

-0.25 511.2132 1076.0521 1439.9359 1739.8073 2433.3409 

0.25 521.3008 1100.4356 1368.0218 1807.6811 2282.9358 

1 518.0633 1094.0310 1393.4669 1785.9063 2424.2919 
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Table 4.30. Natural frequencies of 2D-FG annular plate (C – S).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 208.8338 519.1056 732.7283 876.2541 1248.6174 

0.25 228.4862 554.6279 695.5696 926.5669 1136.3471 

1 222.5540 539.6703 708.1353 906.3655 1247.9275 

2 

-0.25 352.5242 869.6100 1273.3604 1483.1961 2132.8660 

0.25 390.7615 925.5517 1214.7484 1571.8185 2013.8710 

1 378.7486 902.0736 1234.5241 1534.7757 2162.5994 

4 

-0.25 371.0052 923.0998 1348.5533 1348.5533 1571.0812 

0.25 410.4111 987.4686 1283.0633 1668.3267 2118.5183 

1 398.1522 960.3865 1305.1944 1628.2464 2285.5319 

1 

0 

-0.25 215.6809 520.9072 727.6532 875.1556 1244.8736 

0.25 234.5959 554.0303 691.0494 923.7110 1137.7312 

1 228.9335 540.9005 704.7205 904.7787 1245.0234 

2 

-0.25 369.8673 905.2896 1314.4178 1540.3216 2209.7793 

0.25 409.0573 962.3661 1253.6196 1630.0756 2060.8098 

1 396.8016 939.0012 1275.6241 1592.7390 2234.2460 

4 

-0.25 394.1258 975.7607 1415.5185 1656.8265 2373.6779 

0.25 435.7919 1041.7347 1346.7769 1755.9372 2190.4493 

1 4228.5879 1014.5832 1371.6642 1715.1131 2389.1661 

2 

0 

-0.25 211.8965 515.9439 712.8224 871.1155 1240.9239 

0.25 230.0074 547.6733 676.5315 919.5152 1132.6553 

1 224.5481 535.2835 690.1237 900.8694 1238.2193 

2 

-0.25 373.0805 913.8649 1322.2859 1555.9815 2232.6403 

0.25 412.0903 970.5624 1260.8698 1646.3716 2074.9650 

1 399.8666 947.4188 1283.1244 1608.8713 2252.6391 

4 

-0.25 400.7554 991.1098 1436.0378 1683.0455 2411.4397 

0.25 442.6798 1057.0097 1365.9344 1783.1389 2216.1423 

1 429.6408 1029.9405 1391.3725 1741.9266 2421.0434 
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Table 4.31. Natural frequencies of 2D-FG annular plate (S – C).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 232.0806 544.1074 732.7283 897.3647 1240.8515 

0.25 248.3341 571.8121 695.5696 937.8031 1023.9417 

1 242.1310 565.2771 708.1353 927.0864 1075.3170 

2 

-0.25 389.7596 915.3153 1276.6780 1525.3038 2152.8839 

0.25 421.6583 962.7783 1216.1509 1598.7481 1808.0192 

1 409.7068 952.4298 1235.4469 1579.9183 1893.1502 

4 

-0.25 410.2514 969.6583 1350.2926 1614.0799 2277.6792 

0.25 443.6027 1024.1808 1283.8198 1694.8871 1903.2602 

1 431.0358 1011.3467 1305.6894 1673.6360 1995.5346 

1 

0 

-0.25 226.6945 537.9263 727.6532 890.7989 1230.8062 

0.25 242.7303 566.7649 691.0494 932.4954 1012.8405 

1 236.6617 560.6527 704.7205 922.0652 1063.9636 

2 

-0.25 402.2638 946.7265 1319.6809 1577.0204 2229.6649 

0.25 434.6832 996.7752 1256.3525 1654.4598 1858.3771 

1 422.5522 986.3755 1278.0523 1634.9169 1951.1643 

4 

-0.25 431.1444 1017.9469 1418.3185 1694.1957 2394.6789 

0.25 465.5386 1075.3919 1348.2750 1780.3092 1985.4476 

1 452.6151 1062.5801 1372.9737 1758.1167 2088.8941 

2 

0 

-0.25 222.2431 532.1618 712.8222 885.7396 1229.8203 

0.25 237.8503 559.3964 676.5315 927.1446 1013.0344 

1 232.0171 553.8822 690.1237 916.5004 1064.7205 

2 

-0.25 405.0447 955.2777 1327.5186 1592.5359 2247.2996 

0.25 437.5178 1004.5890 1263.6399 1669.9819 1871.2701 

1 425.4252 994.5850 1285.5539 1650.3045 1963.9929 

4 

-0.25 437.7317 1033.6080 1438.8857 1720.5518 2425.1973 

0.25 472.5048 1090.6101 1367.4905 1806.9795 2006.5488 

1 459.5001 1078.1806 1392.7193 1784.6312 2109.3788 
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Table 4.32. Natural frequencies of 2D-FG annular plate (S – S).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 174.7248 497.2968 732.7283 869.2191 1240.6618 

0.25 206.0830 550.0819 695.5696 926.4358 1008.8635 

1 195.1535 531.9131 708.1353 906.3353 1070.5693 

2 

-0.25 296.0055 821.2940 1272.0376 1465.2125 2132.8320 

0.25 352.1845 910.2399 1213.3533 1571.8120 1785.6608 

1 332.3177 880.0185 1232.8641 1534.2185 1887.1155 

4 

-0.25 308.4638 873.9258 1347.8149 1552.6064 2254.8742 

0.25 367.3416 973.3070 1282.2656 1668.3267 1881.5043 

1 346.5125 939.1326 1304.2589 1627.6080 1989.8759 

1 

0 

-0.25 177.3302 496.4549 727.6532 866.4435 1228.7325 

0.25 207.6900 548.3803 691.0494 923.7108 999.1938 

1 196.7958 531.5151 704.7205 904.5511 1059.4016 

2 

-0.25 308.6840 854.0797 1313.7761 1520.2459 2209.2225 

0.25 366.2507 946.3259 1252.7749 1630.0746 1832.7096 

1 345.6705 915.4978 1274.6166 1591.9070 1943.5180 

4 

-0.25 326.7206 921.7935 1415.1410 1635.0805 2372.9353 

0.25 388.2759 1025.8491 1346.2839 1755.9298 1958.6087 

1 366.2753 990.5788 1371.0812 1714.1030 2081.0834 

2 

0 

-0.25 174.9367 493.8873 712.8224 863.8476 1229.5063 

0.25 204.6146 543.2919 676.5315 919.4833 999.5972 

1 193.9999 527.5267 690.1237 900.8112 1060.2975 

2 

-0.25 311.6781 863.8904 1321.5607 1537.1655 2232.3820 

0.25 369.5316 955.5993 1259.8859 1646.3470 1845.7555 

1 348.8715 925.1286 1281.9980 1608.3621 1956.4901 

4 

-0.25 322.5765 937.6972 1435.6166 1662.4238 2411.4395 

0.25 395.0021 1041.9948 1365.3637 1783.1117 1979.8545 

1 372.7099 1006.8279 1360.7229 1741.3295 2101.7136 
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Table 4.33. Natural frequencies of 2D-FG annular plate (C – F).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 70.3747 277.1798 402.0721 609.8991 964.8122 

0.25 86.0937 315.0212 405.5163 680.1548 1015.9010 

1 85.0119 304.5273 412.9435 649.6844 1001.7801 

2 

-0.25 114.7747 460.2362 711.8073 1020.0036 1628.8129 

0.25 141.9161 521.9434 723.5719 1138.1823 1734.1122 

1 139.7458 506.0531 733.1160 1086.3818 1698.5811 

4 

-0.25 121.6335 488.7039 746.8060 1082.7031 1727.1490 

0.25 150.2760 556.5651 756.2502 1210.8519 1839.6829 

1 148.0020 538.2853 768.1037 1154.8627 1801.4326 

1 

0 

-0.25 79.4545 289.8792 431.2523 617.4968 969.8793 

0.25 96.9606 329.5091 434.1601 687.4903 1021.9370 

1 95.8267 318.2027 442.3653 657.3351 1007.2738 

2 

-0.25 123.1341 484.5248 744.5073 1063.4599 1691.1457 

0.25 152.4226 550.3797 756.8416 1185.8230 1798.8829 

1 150.0506 532.8846 767.2244 1131.9879 1762.4582 

4 

-0.25 130.3217 519.9489 787.1044 1145.3119 1820.2738 

0.25 161.4586 593.1025 798.4395 1279.4956 1931.1837 

1 158.8889 572.9670 810.8048 1220.4642 1895.2813 

2 

0 

-0.25 79.3657 288.5259 430.6635 617.3439 970.9539 

0.25 96.1620 327.8543 432.3848 688.2570 1023.6919 

1 95.2935 316.8621 440.9256 657.6547 1008.8508 

2 

-0.25 124.7164 490.3458 752.8335 1075.8906 1710.7631 

0.25 154.0425 556.8384 764.6455 1199.9927 1819.1624 

1 151.7588 539.1996 775.4243 1145.2582 1782.6926 

4 

-0.25 132.5077 529.1340 800.7303 1164.5659 1850.5251 

0.25 163.9676 603.2192 812.0332 1300.9544 1962.4681 

1 161.4242 582.8672 824.7259 1240.7516 1926.3841 
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Table 4.34. Natural frequencies of 2D-FG annular plate (F – C).  

 ௛ߣ ௭ߣ ௥ߣ
Natural Frequencies (Hz) 

߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ 

0 

0 

-0.25 98.4547 339.5240 551.4558 658.0194 983.9485 

0.25 111.8896 374.9097 534.0486 721.1034 989.5488 

1 104.7315 361.2457 535.1673 703.1956 1003.4601 

2 

-0.25 160.5845 560.2452 966.5523 1100.7682 1659.7754 

0.25 183.5439 621.3332 941.3866 1207.3777 1716.3037 

1 171.5563 597.1128 942.4024 1177.0081 1718.1266 

4 

-0.25 170.1181 595.1349 1019.3332 1167.1855 1761.6348 

0.25 194.3650 661.3166 989.8066 1284.2761 1812.4210 

1 181.6386 635.3041 991.4041 1250.6210 1820.0653 

1 

0 

-0.25 90.5313 329.4329 535.1844 647.2040 971.5550 

0.25 102.9642 361.9830 517.4835 709.5363 977.3569 

1 96.6509 349.6769 519.5357 692.0462 990.7479 

2 

-0.25 164.5921 579.6083 999.3998 1137.2147 1717.4086 

0.25 187.7356 640.5988 970.0990 1247.6700 1768.9641 

1 175.8471 616.5987 972.7646 1216.0855 1775.4668 

4 

-0.25 179.0519 626.0661 1078.6238 1223.7183 1847.1767 

0.25 203.9437 692.6861 1043.9076 1345.3611 1895.3885 

1 191.0486 666.5701 1047.5851 1310.0868 1906.8738 

2 

0 

-0.25 90.0387 326.8759 529.2938 645.4225 971.6841 

0.25 102.1945 359.3298 511.2328 708.6944 978.5038 

1 96.0228 347.0239 513.5121 691.0291 992.2905 

2 

-0.25 165.9646 585.1749 1006.0933 1149.3513 1735.8711 

0.25 189.2171 646.8194 976.5171 1261.5612 1786.5710 

1 177.2881 622.5538 979.2133 1229.6127 1794.2818 

4 

-0.25 181.5611 635.5185 1093.4223 1242.8503 1875.8218 

0.25 206.7987 703.1073 1058.4795 1366.7026 1923.0946 

1 193.7574 676.5963 1062.1327 1330.9463 1936.1193 
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The proposed method is applied to study the effect of different thickness 

profiles, the power law indices, and several boundary conditions on the free 

vibration response of the 2D-FG annular plates of variable thickness. Those 

remarkable influences can be clearly seen in Tables (4.29 – 4.34). As anticipated, 

the annular plates with convex thickness profiles (ߣ௛ ൌ 0.25) have the highest 

natural frequencies while the plates with concave thickness profiles (ߣ௛ ൌ െ	0.25) 

have the lowest natural frequencies among compared cases. when the plate is 

radially FG (ߣ௭ ൌ 0), it is revealed that increasing the value of ߣ௥ decreases natural 

frequencies of the structure for the considered FGM model. When the plate is FG 

only through the thickness direction (ߣ௥ ൌ 0), It can be concluded that an increase 

in the value of ߣ௭ leads to an increase in the natural frequencies of the structure. In 

2D-FG annular plates gradually increasing of the ߣ௥ and ߣ௭ values increase the 

natural frequencies of the plate.  

Boundary conditions have also a significant influence on the free vibration 

behavior of considered structures. Clamped – clamped boundary conditions lead to 

the highest natural frequencies and clamped – free boundary conditions lead to the 

smallest free vibration characteristics. 

 

4.5. Forced Vibration Analysis of 2D-FG Annular Plates  

4.5.1. Verification 

To examine the forced vibration behavior of 2D-FG annular plates a 

computer program code is written in FORTRAN. To validate the suggested 

scheme, several 2D-FG annular plates of uniform thickness are considered. 

Transient responses of the considered structures are examined by the proposed 

method and ANSYS. Calculated results are compared and illustrated below. One 

type of dynamic uniformly distributed load, as shown in Figure (4.10) with an 

amplitude Pz0 = 100 kN/m is applied to the plate. Constituent materials are two 

distinct metals and two distinct ceramics given in Table (3.1). Mechanical 
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properties of the plate is considered to vary both in radial and thickness direction 

by a power law form (Eq. (3.7)).  The Poisson’s ratio is assumed to be constant. 

Unified approach of the CFM and the Laplace transform is employed to solve the 

governing equations of the problem. The canonical Eqs. (3.132 - 3.137) are solved 

for a series of Laplace parameter. The results obtained in the Laplace domain, are 

transformed to the time domain with the help of modified Durbin’s numerical 

inverse Laplace transform method. The damped forced vibration of the considered 

structures is investigated by the means of Kelvin damping model. 

To examine the transient response of the considered structures in ANSYS, 

the plate is divided into 200 SHELL209 elements. Shear deformation is included in 

this element. Each element is divided into 40 layers in the thickness direction. It 

must be noted that for each layer a different material is defined in ANSYS. 

Whereas, geometric and material properties can be considered as a function of 

radial coordinates by using the suggested approach. 

In this case, results obtained for fewer Laplace transform parameters 

(coarse time increment) overlap the results obtained with higher parameters (finer 

increments) (see Noori et al. (2018a)). While the validity of the ANSYS results 

depends on the appropriate selection of the optimum time step size. 64 steps of 

time (64 Laplace parameters) are used in the analysis by the presented procedure 

while 512 steps of time each are used in the ANSYS. By using the suggested 

approach considerable saving in computation time can be observed 

A 2D-FG annular plates of uniform thickness (݄௜ ൌ ݄௢ ൌ 1	݉	; ௢ݎ	 ൌ

5	݉;	 ௜ݎ	 ൌ 1	݉ሻ	is considered (Figure (4.10)).	The plate is subjected to step 

dynamic load. The shear correction factor, ݇௦, is taken to be 5/6. For Laplace 

transform of the load see Appendix A. 

The damped and undamped forced vibration analysis is performed. 

Comparisons for maximum vertical deflections, shear forces, bending moments 

and rotations of the plate are obtained and compared for various boundary 
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conditions, ߣ௥, ߣ௭	and ߣ௛values. Comparisons are presented in the graphical form 

will be given below. 

 

(a) 

 

(b) 
Figure 4.10. (a) Perspective view of the plate (b) Section and dynamic load 

 

Figures (4.11 - 4.13) present the comparison of maximum vertical 

displacement, bending moment and shear force of clamped-clamped isotropic 

annular plate for ߣ௥ ൌ 0 and ߣ௭ ൌ 0.  
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Figure 4.11. Comparison of the maximum vertical displacement. 
 

 
Figure 4.12. Comparison of the maximum bending moment. 
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Figure 4.13.Comparison of the maximum shear force. 
 

 Figures (4.14 - 4.16) illustrate the comparison of maximum vertical 

displacement, bending moment and shear force of clamped-clamped supported 

annular plate. The plate is assumed to be FG only in the thickness direction for 

௥ߣ ൌ 0 and ߣ௭ ൌ 2. 

 

 
Figure 4.14. Comparison of the maximum vertical displacement. 
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Figure 4.15. Comparison of the maximum bending moment. 
 

 
Figure 4.16. Comparison of the maximum shear force. 
 

Figures (4.17 - 4.19) demonstrate the comparison of maximum vertical 

displacement, bending moment and shear force of clamped clamped supported FG 

annular plate. The plate is assumed to be FG only in the thickness direction for 

௥ߣ ൌ 0 and ߣ௭ ൌ 4. 
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Figure 4.17. Comparison of the maximum vertical displacement. 
 

 
Figure 4.18. Comparison of the maximum bending moment. 
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Figure 4.19. Comparison of the maximum shear force. 
 

 Figures (4.20 - 4.22) report the comparison of maximum vertical 

displacement, bending moment and shear force of clamped-clamped supported 

annular plate. The plate is assumed to be radially FG for ߣ௥ ൌ 1 and ߣ௭ ൌ 0. 

 

 
Figure 4.20. Comparison of the maximum vertical displacement. 
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Figure 4.21. Comparison of the maximum bending moment. 
 

 
Figure 4.22. Comparison of the maximum shear force. 
 

 Figures (4.23 - 4.25) indicate the comparison of maximum vertical 

displacement, bending moment and shear force of clamped – simply supported 

annular plate. The plate is assumed to be functionally graded both in radial and 

thickness directions for ߣ௥ ൌ 1 and ߣ௭ ൌ 2. 
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Figure 4.23. Comparison of the maximum vertical displacement. 
 

 
Figure 4.24. Comparison of the maximum bending moment. 
 



4. RESULTS AND DISCUSSIONS                             Ahmad Reshad NOORI 

99 

 
Figure 4.25. Comparison of the maximum shear force. 
 

 Figures (4.26 - 4.28) present the comparison of maximum vertical 

displacement, bending moment and shear force of clamped – simply supported 

annular plate. The plate is assumed to be 2D-FG for ߣ௥ ൌ 1 and ߣ௭ ൌ 4. 

 

 
Figure 4.26. Comparison of the maximum vertical displacement. 
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Figure 4.27. Comparison of the maximum bending moment. 
 

 
Figure 4.28. Comparison of the maximum shear force. 
 

 Figures (4.29 - 4.32) show the comparison of maximum vertical 

displacement, bending moment, rotation and shear force of clamped – free annular 

plate. The plate is assumed to be functionally graded only in radial direction for 

௥ߣ ൌ 2 and ߣ௭ ൌ 0. 
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Figure 4.29. Comparison of the maximum vertical displacement. 
 

 
Figure 4.30. Comparison of the maximum bending moment. 
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Figure 4.31. Comparison of the maximum rotation. 
 

 
Figure 4.32. Comparison of the maximum shear force. 
 

Figures (4.33 - 4.36) indicate the comparison of maximum vertical 

displacement, bending moment, rotation and shear force of clamped – free 

supported annular plate. The plate is assumed to be functionally graded both in 

radial and thickness directions for ߣ௥ ൌ 2 and ߣ௭ ൌ 2. 
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Figure 4.33. Comparison of the maximum vertical displacement. 
 

 
Figure 4.34. Comparison of the maximum bending moment. 
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Figure 4.35. Comparison of the maximum rotation. 
 

 
Figure 4.36. Comparison of the maximum shear force. 
 

Figures (4.37 - 4.40) present the comparison of maximum vertical 

displacement, bending moment, rotation and shear force of clamped – free 

supported annular plate. The plate is assumed to be functionally graded both in 

radial and thickness directions  for ߣ௥ ൌ 2 and ߣ௭ ൌ 4. 
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Figure 4.37. Comparison of the maximum vertical displacement. 
 

 
Figure 4.38. Comparison of the maximum bending moment. 
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Figure 4.39. Comparison of the maximum rotation. 
 

 
Figure 4.40. Comparison of the maximum shear force. 

 

It is apparent in Figures (4.11 – 4.40), that current results show a very good 

agreement with those of ANSYS for several boundary conditions and volume 

fraction exponents. To obtain reliable accurate results for the damped and 

undamped transient response of 2D-FG circular and annular plates in ANSYS, an 

appropriate number of graded layers in thickness and radial direction of the plate is 

required. Not surprisingly, for higher values of 	ߣ௭ and 	ߣ௥ results of ANSYS start 
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to differ from those of the CFM, especially for higher values of	ߣ௭.  Because 	ߣ௭ 

has a more significant influence on the static and dynamic response of the 

considered problem. For this reason, then plates must be divided into much more 

layers in the thickness direction for higher values of 	ߣ௭ in ANSYS.    

By infusing the suggested procedure to the governing equations of the 

problem damped and undamped transient response of 2D-FG plates can be carried 

out in a simple and efficient manner. Exactness of the results of the CFM does not 

depend on the number and size of the time steps, for this reason results obtained for 

a coarse time increment along with fewer Laplace transform parameters coincide 

with those obtained with finer increments and higher parameters. This reveals the 

effectiveness and superiority of the proposed method. The exactness of the results 

of the CFM does not depend on the number and size of the time steps, for this 

reason, results obtained for a coarse time increment along with fewer Laplace 

transform parameters coincide those obtained with finer time increments and 

higher parameters. This reveals the effectiveness and superiority of the proposed 

method. 

When step by step time integration methods, for example the Newmark 

method, is applied to tackle time-dependent governing equations of present class of 

problems, the optimum time step size is required to obtain accurate results. In this 

thesis, 64 and 512 sub-steps of time have been used in the suggested method and in 

ANSYS, respectively.  
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4.5.2. Forced Vibration of 2D-FG Annular Plates with Variable Thickness 

 

 

                           
Figure 4. 41. Illustrations of thickness profiles (ߣ௛ ൌ ௛ߣ ;0.25 ൌ െ0.25; ߣ௛ ൌ 1)  
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In this section, forced vibration of 2D-FG annular plates with variable 

thickness is examined.  

First, the influence of geometric constant on the transient response of the 

considered plate is studied.  The radially varying thickness profiles are shown in 

Figure (4.41). A clamped – free annular plate is considered under the same 

dynamic loads as given in the previous section. The plate has inner radii of	ݎ௜ ൌ

1	m, outer radius of ݎ௢ ൌ 5	m. The shear correction factor ݇௦ is taken to be ߨଶ 12.⁄ . 

The thickness of the plate is considered to be	ሺ݄௜ ൌ 2	mሻ in inner radii ܽ݊݀ 

ሺ݄଴ ൌ 1	mሻ at outer radius. Properties of materials are graded based on Eq. (3.7). 

The radial coordinate dependent function of the thickness is given by Eq. (3.9). 

Boundary conditions of the problem are given by Eqs. (3.82 – 3.83).  Forced 

vibration of the plate is examined for ߣ௥ ൌ 0 and ߣ௭ ൌ 0 volume fraction 

exponents. The time histories for maximum vertical displacement and rotation are 

illustrated in Figures (4.42 - 4.43). 

 

 
Figure 4.42.Comparison of the maximum vertical displacement. 
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Figure 4.43. Comparison of the maximum rotation. 
 

Transient response of the considered plate is studied for ߣ௥ ൌ 0 and ߣ௭ ൌ 2 

values. The results for maximum vertical displacement and rotation are given in 

Figures (4.44 - 4.45). 

 

 
Figure 4.44. Comparison of the maximum vertical displacement. 
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Figure 4.45.Comparison of the maximum rotation. 
 

Undamped forced vibration behavoir of the considered structure is carried 

out for ߣ௥ ൌ 0 and ߣ௭ ൌ 4 values. Numerical values for maximum vertical 

displacement and rotation are presented in Figures (4.46- 4.47). 

 

 
Figure 4.46 Comparison of the maximum vertical displacement. 
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Figure 4.47. Comparison of the maximum rotation. 
 

 As expected, the thickness variation profile has a highly significant 

influence on the undamped forced vibration of the considered structures. 

According to Figures (4.42 - 4.47) the plate with a concave thickness variation 

profile (ߣ௛ ൌ െ0.25) has the highest vibration amplitudes and periods for 

deflection and rotations. Contrary to this case, the annular plate with the convex 

thickness variation profile (ߣ௛ ൌ 0.25) has the lowest periods and amplitudes of 

vibration. This behavior is due to the resulting change in the flexural rigidity of the 

plate.  

In the next step, the effect of variations of Young’s modulus and the 

density in the radial direction on the forced vibration of the 2D-FG annular plates 

of variable thickness is examined. Thickness profiles are shown in Figure (4.40). A 

free – clamped supported annular plate is considered under the same dynamic loads 

as given in the previous section. The plate has inner radii of	ݎ௜ ൌ 1	m, outer radius 

of ݎ௢ ൌ 5	m. Properties of materials are graded based on Eq. (3.7). The radial 

coordinate dependent function of the thickness is given by Eq. (3.9). 
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 Forced vibration of the plate is examined for ߣ௛ ൌ 1 and ߣ௭ ൌ 4 values. 

The time histories for maximum vertical displacement and rotation are illustrated 

in Figures (4.48 - 4.49). 

 

 
Figure 4.48. Comparison of the maximum vertical displacement. 
 

 
Figure 4.49. Comparison of the maximum rotation. 
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Figures (4.50-4.51) show the comparison of maximum vertical 

displacement and rotation for F – C annular plate ሺߣ௛ ൌ 0.25 and ߣ௭ ൌ 4ሻ. Results 

are obtained for various	ߣ௥ values and compared in graphical form. 

 

 
Figure 4.50.Comparison of the maximum vertical displacement. 
 

 
Figure 4.51. Comparison of the maximum rotation. 
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Figures (4.52 - 4.53) demosntrate the comparison of maximum vertical 

displacement and rotation for F – C supported annular plate ሺߣ௛ ൌ െ0.25 and 

௭ߣ ൌ 4ሻ. Results are obtained for various	ߣ௥ values and compared in graphical 

form. 

 

 
Figure 4.52. Comparison of the maximum vertical displacement. 
 

 
Figure 4.53 Comparison of the maximum rotation. 
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The results reveal that the ߣ௥ has an insignificant effect on the transient 

response of the considered structures. It can be concluded from Figures (4.48 - 

4.53) that an increase in the radial exponent of volume fractions leads to a decrease 

in the period and vibration amplitude of forced vibration results.   

Furthermore, a comprehensive parametric study is carried out to highlight 

the effects of the volume fraction exponents of the thickness direction, ߣ௭, on the 

forced vibration response of the considered structures. Material properties, 

dynamic loads, and geometric properties of the plate are the same as the previous 

example. The plate is considered to be clamped in the inner edge and free at its 

outer edge.  Results are depicted in Figures (4.54 - 4.55) for various ߣ௭ values to 

compare the time history of maximum vertical displacement and rotation for C – F 

annular plate of variable thickness for ߣ௥ ൌ 1 and ߣ௛ ൌ 1 values.  

 

 
Figure 4.54. Comparison of the maximum vertical displacement. 
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Figure 4.55. Comparison of the maximum rotation. 
 

Figures (4.56 - 4.57) illustrate the influence of exponent of volume fraction 

index, ߣ௭, of thickness direction on the forced vibration of an annular plate with 

clamped-free boundary conditions for ߣ௥ ൌ 1 and ߣ௛ ൌ െ0.25. 

 

 
Figure 4.56. Comparison of the maximum vertical displacement. 
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Figure 4.57. Comparison of the maximum rotation. 
 

Figures (4.58 - 4.59) show the comparison of maximum vertical 

displacement and rotation for C – F annular plate ሺߣ௥ ൌ 1 and ߣ௛ ൌ 0.25ሻ. Results 

are obtained for various ߣ௭ values and compared in graphical form. 

 

 
Figure 4.58. Comparison of the maximum vertical displacement. 
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Figure 4.59 Comparison of the maximum rotation. 
 

It is observed in Figures (4.54- 4.59) that volume fraction exponent of the 

thickness direction has a significant effect on the forced vibration response of the 

considered plate. It can be seen that with increasing ߣ௭  values, periods and 

amplitudes of displacement reduce. It is worthwhile noting that the effect of ߣ௭  on 

the transient response of the 2D-FG plate is more noticeable than the influence of 

 .௛ߣ ௥ andߣ

Finally, the half rectified sine wave function of a transverse uniform 

distributed load is considered. In this case, the beating phenomenon occurs Figure 

(4.61) in the considered structure. The magnitude of displacements depends on the 

period of the dynamic load and the vibration characteristics of the annular plate. As 

these quantities approach to each other, the amplitudes of displacement become 

larger. In this sample, the frequency of the load (e.g. 166.6 Hz) is close to the 

vibration characteristics of the considered plate (e.g. 158.8889 Hz for ߣ௭=4; 

95.8267 Hz for ߣ௭=0; 150.0506 Hz for ߣ௭=2). The plate  ሺߣ௥ ൌ 1 and ߣ௛ ൌ 1ሻ is 

given in Figure (4.60). The boundary conditions are considered to be C – F. For 

Laplace transform of the load see Appendix A. 
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Figure 4.60. Geometry of the 2D-FG annular plate and dynamic load. 
 

 
Figure 4.61. Comparison of the maximum vertical displacement. 
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4.6. Forced Vibration Analysis of 2D-FG Circular Plates 

In this section, damped and undamped forced vibration response of 2D-FG 

circular plates with variable thickness is investigated.  

 

4.6.1. Undamped Forced Vibration 

First, the effects of geometric constant on the undamped forced vibration of 

the circular plate are examined for several boundary conditions.  The radially 

varying thickness profiles are shown in Figure (4.9). The dynamic load is given in 

Figure (4.10). The plate has radius of ݎ௢ ൌ 5	m. The shear correction factor ݇௦ is 

taken to be ߨଶ 12.⁄  The thickness of the plate is considered to be	ሺ݄௜ ൌ 2	mሻ in 

inner radii ܽ݊݀ ሺ݄଴ ൌ 1	mሻ at outer radius. Properties of materials are graded 

based on Eq. (3.7). The radial coordinate dependent function of the thickness is 

given by Eq. (3.9).   

Forced vibration of a clamped plate is studied. The time history for 

maximum vertical displacement is illustrated in Figures (4.62 – 4.64). For a 

clamped circular plate the boundary conditions are given by Eqs. (3.68 – 3.69). 

 

 
Figure 4.62. Comparison of the vertical displacement ሺߣ௥ ൌ 0 and ߣ௭ ൌ 0ሻ. 
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Figure 4.63. Comparison of vertical displacement ሺߣ௥ ൌ 0 and ߣ௭ ൌ 2ሻ. 

 

 
Figure 4.64. Comparison of vertical displacement ሺߣ௥ ൌ 0 and ߣ௭ ൌ 4ሻ. 

 

Forced vibration of a simply supported circular plate is examined by the 

suggested appraoch. The time history for maximum vertical displacement is 

illustrated in Figures (4.65 – 4.67). For a simply supported circular plate the 

boundary conditions are given by Eqs. (3.70 – 3.71). 
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Figure 4.65. Comparison of the vertical displacement ሺߣ௥ ൌ 1 and ߣ௭ ൌ 0ሻ. 
 

 
Figure 4.66. Comparison of the vertical displacement ሺߣ௥ ൌ 1 and ߣ௭ ൌ 2ሻ. 
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Figure 4.67. Comparison of the vertical displacement ሺߣ௥ ൌ 1 and ߣ௭ ൌ 4ሻ. 
 

Undamped transient response of a roller supported 2D FG circular plate is 

studied. Results of the maximum vertical displacement are showed in Figures (4.68 

– 4.70).  

 

 
Figure 4.68. Comparison of the vertical displacement ሺߣ௥ ൌ 2 and ߣ௭ ൌ 0ሻ. 
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Figure 4.69. Comparison of the vertical displacement ሺߣ௥ ൌ 2 and ߣ௭ ൌ 2ሻ. 
 

 
Figure 4.70. Comparison of the vertical displacement ሺߣ௥ ൌ 2 and ߣ௭ ൌ 4ሻ. 
 

We observe in Figures (4.62 - 4.70) that geometric constant (ߣ௛) has a 

significant effect on the forced vibration response of 2D-FG circular plates of 

variable thickness. Obtained results for various volume fraction exponents and 

boundary conditions reveal that the displacement components of the circular plate 

of uniform thickness (ߣ௛ ൌ 0) have the lowest periods and vibration amplitudes. 
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When the thickness of the plate has a concave variation (ߣ௛ ൌ െ0.25), the 

vibration amplitudes and periods become the highest.  

In the next step, the influences of variations of material properties in the 

radial direction on the transient response of the 2D-FG circular plates of variable 

thickness are studied. Thickness profiles are shown in Figure (4.9). Geometric and 

material properties are as in the previous section. 

Undamped forced vibration of a clamped plate is studied. The plate is 

considered under the same step load as given in the previous section. The time 

histories for maximum vertical displacement of several cases are illustrated in 

Figures (4.71 – 4.73). For a clamped circular plate the boundary conditions are 

given by Eqs. (3.68 – 3.69). 

 

 
Figure 4.71. Comparison of the vertical displacement ሺߣ௭ ൌ 0 and ߣ௛ ൌ െ0.25ሻ. 
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Figure 4.72. Comparison of the vertical displacement ሺߣ௭ ൌ 2 and ߣ௛ ൌ െ0.25ሻ. 
 

 
Figure 4.73. Comparison of the vertical displacement ሺߣ௭ ൌ 4 and ߣ௛ ൌ െ0.25ሻ. 
 

Undamped transient response of a roller supported 2D-FG circular plate is 

studied. Results of the maximum vertical displacement are showed in Figures (4.74 

– 4.76). For a roller supported circular plate the boundary conditions are given by 

Eqs. (3.72 – 3.73). 
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Figure 4.74.Comparison of the vertical displacement ሺߣ௭ ൌ 0 and ߣ௛ ൌ 1ሻ. 
 

 
Figure 4.75.Comparison of the vertical displacement ሺߣ௭ ൌ 2 and ߣ௛ ൌ 1ሻ. 
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Figure 4.76. Comparison of the vertical displacement ሺߣ௭ ൌ 4 and ߣ௛ ൌ 1ሻ. 
 

Forced vibration of a simply supported circular plate is studied by the 

presented approach. Results maximum vertical displacement are presented in 

Figures (4.77 – 4.79).  

 

 
Figure 4.77. Comparison of the vertical displacement ሺߣ௭ ൌ 0 and ߣ௛ ൌ 0.25ሻ. 
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Figure 4.78. Comparison of the vertical displacement ሺߣ௭ ൌ 2 and ߣ௛ ൌ 0.25ሻ. 
 

 
Figure 4.79. Comparison of the vertical displacement ሺߣ௭ ൌ 4 and ߣ௛ ൌ 0.25ሻ. 
 

The results reveal that when the plate is radially FG (ߣ௭ ൌ 0ሻ, ߣ௥ has a 

significant influence on the forced vibration results. Increasing ߣ௥ decreases the 

amplitude of the vibration but increases the period of the vibration. 

But when the plate is 2D-FG is considered, the ߣ௥ has an insignificant 

effect on the transient response of the considered structures. It can be concluded 
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that an increase in the radial exponent of volume fractions leads to a decrease in the 

period and vibration amplitude of forced vibration results.   

Furthermore, a comprehensive parametric study is carried out to investigate 

the influences of the volume fraction exponents of the thickness direction, ߣ௭, on 

the forced vibration response of the 2D-FG thick circular plates. Material 

properties, dynamic loads, and geometric properties of the plate are the same as the 

previous cases. Results are obtained for several boundary conditions.  

First, the plate is assumed to be clamped. Results are depicted in Figures 

(4.80 - 4.82) for various ߣ௭ values to compare the time history of maximum 

vertical displacements. For a clamped circular plate the boundary conditions are 

given by Eqs. (3.68 – 3.69). 

 

 
Figure 4.80. Comparison of the vertical displacement ሺߣ௥ ൌ 0 and ߣ௛ ൌ 0.25ሻ. 
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Figure 4.81. Comparison of the vertical displacement ሺߣ௥ ൌ 1 and ߣ௛ ൌ 0.25ሻ. 
 

 
Figure 4. 82. Comparison of the vertical displacement ሺߣ௥ ൌ 2 and ߣ௛ ൌ 0.25ሻ. 
 

Next, forced vibration of a simply supported circular plate is studied by the 

proposed scheme. The time history for maximum vertical displacements is showed 

in Figures (4.83 – 4.85). For a simply supported circular plate the boundary 

conditions are given by Eqs. (3.70 – 3.71). 
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Figure 4.83. Comparison of the vertical displacement ሺߣ௥ ൌ 0 and ߣ௛ ൌ െ0.25ሻ. 
 

 
Figure 4. 84. Comparison of the vertical displacement ሺߣ௥ ൌ 1 and ߣ௛ ൌ െ0.25ሻ. 
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Figure 4.85. Comparison of the vertical displacement ሺߣ௥ ൌ 2 and ߣ௛ ൌ െ0.25ሻ. 
 

Finally, undamped transient response of a roller supported 2D FG circular 

plate is presented. Results of the maximum vertical displacement are demonstrated 

in Figures (4.86 – 4.88).  

 

 
Figure 4.86. Comparison of the vertical displacement ሺߣ௥ ൌ 0 and ߣ௛ ൌ 1ሻ. 
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Figure 4.87. Comparison of the vertical displacement ሺߣ௥ ൌ 1 and ߣ௛ ൌ 1ሻ. 
 

 
Figure 4.88. Comparison of the vertical displacement ሺߣ௥ ൌ 2 and ߣ௛ ൌ 1ሻ. 
 

It can be clearly seen in Figures (4.80- 4.88) that volume fraction exponent, 

 of the thickness direction has a remarkable effect on the forced vibration	௭,ߣ

response of the 2D-FG circular plates of variable thickness. It is observed that with 

increasing ߣ௭  values periods and amplitudes of displacement reduce. It is 
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worthwhile noting that the effect of ߣ௭  on the transient response of the 2D-FG 

plate is more noticeable than the influence of ߣ௥ and ߣ௛. 

 

4.6.2. Damped Forced Vibration 

 In this section, the Kelvin damping model is employed in order to 

investigate the viscoelastic response of the 2D-FG circular plates of variable 

thickness for various types of impulsive dynamic loads and different boundary 

conditions. The elastic viscoelastic analogy (see Boley and Weiner (2012)) is used 

to treat the internal viscoelastic damping case. Viscoelastic material properties are 

obtained by Eq. (3.141) and substituted to governing equations of considered 

problem. In order to present the evaluation of the damping effect, many cases with 

different damping coefficients are calculated. 

As a first case, a 2D-FGM circular plate with the clamped edge is 

considered. The plate is subjected to a right triangle impulsive load as seen in 

Figure (4.88). The plate has radius of ݎ௢ ൌ 5	m. The shear correction factor ݇௦ is 

taken to be ߨଶ 12.⁄  The thickness of the plate is considered to be	ሺ݄௜ ൌ 2	mሻ in 

inner radii ܽ݊݀ ሺ݄଴ ൌ 1	mሻ at outer radius. Properties of materials are graded 

based on Eq. (3.7). The radial coordinate dependent function of the thickness is 

given by Eq. (3.9).  For a clamped circular plate the boundary conditions are given 

by Eqs. (3.68 – 3.69). Laplace transforms of a right triangle impulsive load is 

available in closed-form. The volume fraction exponents are assumed to be 

ሺߣ௥ ൌ 2 and ߣ௭ ൌ 2ሻ. For Laplace transform of the load see Appendix A. 

Damped forced vibration results are calculated with the CFM in the 

Laplace domain. Obtained resuts are retransferred to the time domain with an 

efficient numerical inerse Laplace transform method. Obtained results are 

compared in Figures (4.90 – 4.92). It can be clearly seen from the figures that 

increasing the damping ratio causes a decrease in the amplitude of dynamic 

behavior. 
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Figure 4.89. Geometry of the clamped circular plate and dynamic load. 
 

 
Figure 4.90. Comparison of the viscoelastic vertical displacement of clamped plate. 
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Figure 4. 91. Comparison of the viscoelastic bending moments of clamped plate. 
 

 
Figure 4.92. Comparison of the viscoelastic shear forces of clamped plate. 
 

Next, the plate is considered to be simply supported. The plate is subjected 

to a triangular impulsive load as seen in Figure (4.92). Laplace transforms of the 

triangular impulsive load is available in closed-form. The volume fraction 

exponents are assumed to be ሺߣ௥ ൌ 1 and ߣ௭ ൌ 4ሻ. Obtained results are compared 

in Figures (4.94 – 4.95). For Laplace transform of the load see Appendix A. 
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Figure 4.93. Geometry of the simply supported circular plate and dynamic load. 
 

 
Figure 4.94. Comparison of the viscoelastic displacement of simply supported 

plate. 
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Figure 4.95. Comparison of the viscoelastic shear forces of simply supported plate. 
 

Finally, the plate is considered to be roller supported. The plate is subjected 

to the impulsive sine load as seen in Figure (4.96). For Laplace transform of the 

load see Appendix A. 

 

 
Figure 4. 96. Geometry of the roller supported circular plate and dynamic load. 
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Laplace transforms of the impulsive sine load is available in closed-form. 

The volume fraction exponents are assumed to be ሺߣ௥ ൌ 2 and ߣ௭ ൌ 4ሻ. Obtained 

results are compared in Figures (4.97 – 4.98). 

 

 
Figure 4.97. Comparison of the viscoelastic displacement of roller supported plate. 
 

 
Figure 4.98. Comparison of the viscoelastic shear forces of roller supported plate. 

 



4. RESULTS AND DISCUSSIONS                             Ahmad Reshad NOORI 

142 

As stated before, the damped dynamic behavior of the 2D - FG circular 

plates is examined for miscellaneous damping ratios. Several kinds of impulsive 

loads are applied to the circular plates of variable thickness. In all loadings and 

boundary conditions, it can be seen that the damping ratio of the structure has a 

significant influence on their dynamic behavior.  By increasing the damping ratio 

dynamic response of the rod will reach faster to the static state. 

 

4.6.3. Beat phenomenon 

 In this section, several wave load functions are applied to different types of 

2D-FG circular plates. The beating occurs in the considered structures when the 

frequency of the wave load is close to (but not exactly equal to) the natural 

frequency of the structure.  

 First, the beating phenomenon is investigated for a clamped 2D-FG 

circular plate of variable thickness. The considered plate is subjected to the 

rectified sine wave function load (Figure (4.99).) The Laplace transform of this 

load is available in closed-form. The radial coordinate dependent function of the 

thickness is given by Eq. (3.9).  For a clamped circular plate the boundary 

conditions are given by Eqs. (3.68 – 3.69).  For Laplace transform of the load see 

Appendix A. 

 

 
Figure 4.99. Dynamic load function 

 

Material properties of the plate are assumed to vary in a power law form. 

Volume fraction exponents of the material variation are ሺߣ௥ ൌ 2 and ߣ௭ ൌ 2ሻ. 
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Maximum deflection results are obtained and compared for several values of ߣ௛. 

Graphical comparison of the result is depicted in Figure (4.100). 

 

 
Figure 4.100. Comparison of displacement of clamped circular plate. 
 

 In this sample, the frequency of the load (e.g. 153.856 Hz) is close to the 

vibration characteristics of the considered plate (e.g. 159.3229 Hz for ߣ௛= -0.25; 

184.1330 Hz for ߣ௛=0.25; 172.06629 Hz for ߣ௛=1). The magnitude of 

displacements depends on the period of the dynamic load and the vibration 

characteristics of the plate. As these quantities approach each other, the amplitudes 

of displacement become larger. 

Next, the beating phenomena are examined for a simply-supported 2D-FG 

circular plate of variable thickness. The considered plate is subjected to the square 

wave function load (Figure (4.101)). For a simply supported circular plate the 

boundary conditions are given by Eqs. (3.70 – 3.71). Volume fraction exponent of 

the material variation in the radial direction is considered to be ሺߣ௥ ൌ 2ሻ. The 

geometric constant is taken as	ߣ௛ ൌ െ0.25. Maximum deflection results are 

obtained and compared for several values of ߣ௭. Graphical comparison of the result 

is presented in Figure (4.102). For Laplace transform of the load see Appendix A. 
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Figure 4.101. Square wave dynamic load function 
 

 
Figure 4.102. Comparison of displacement of simply supported plate. 
 

In this case, the frequency of the load (e.g. 100 Hz) is close to the vibration 

characteristics of the considered plate (e.g. 101.7568 Hz for ߣ௭= 4; 52.5028 Hz for 

 ௭=2). The magnitude of displacements depends on theߣ ௭=0; 95.3231 Hz forߣ

period of the dynamic load and the vibration characteristics of the plate. As these 

quantities approach to each other, the amplitudes of displacement become larger. 
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5. CONCLUSIONS 

 

In this thesis, the axisymmetric bending, free vibration, damped and 

undamped forced vibration responses of two-directional functionally graded thick 

circular and annular plates with variable thickness have been investigated.  Infusion 

of the CFM into the present class of problems is presented. 

For the analysis of the bending response of the considered stuructures, 

governing equations are obtained by the principle of minimum total potential 

energy based on the FSDT. By using the suggested method, 2D-FG plates under 

arbitrary radial and transverse axisymmetric loads and boundary conditions can be 

analyzed. The present research has been verified for several examples of annular 

and solid circular plates. Comparison of the results reveals that the present results 

are in an excellent agreement with those available in the literature. Displacements, 

rotations, internal shear forces and bending moments are presented for several 

exponents of volume fractions, thickness variation constants, and boundary 

conditions. Results demonstrate that material gradient indexes and geometric 

constants have important impacts on the response of the class of problems on hand. 

It can be found out from the results that desired design requirements can be derived 

by selecting optimized volume fraction exponents and thickness variation 

functions.  

Furthermore, the effects of thickness variation functions and volume 

fraction exponents on the axisymmetric response of 2D-FG solid circular plates 

have been studied. The deflection of the plate decreases as ߣ௥ and ߣ௭ increase. This 

response of the plate is related to the resulting increase in Young’s modulus. But 

increasing the geometric constant	ߣ௛, gives rise to the increase of the deflection. It 

has been seen that		ߣ௭ has a more significant effect on the axisymmetric bending 

response of the considered problems. 
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In the case of the dynamic analysis of the considered structures, time-

dependent governing equations are transformed to the Laplace space. The set of 

obtained equations are solved numerically by the CFM for a set of Laplace 

parameters. Modified Durbin’s inverse Laplace transform method is employed to 

retransform the solution results to the time-space. The validity, superiority, and 

accuracy of the suggested approach are demonstrated through several examples by 

comparing the results with available literature and those of ANSYS. Good 

agreement is found. The damped forced vibration of the considered structures is 

investigated by means of Kelvin damping model. As expected, the damping ratio of 

the structure has a significant influence on their dynamic behavior. The dynamic 

behavior of the plate turns to static after a while.  Increasing the damping ratio 

causes a decrease in the amplitude of dynamic behavior. It can be concluded that in 

the case of periodic loading when the frequencies of the applied load and the 

considered structure are close to each other the beating occurs. The novelty of the 

proposed method is that it gives the natural frequencies of 2D-FG circular and 

annular plates without performing mode shape study. The suggested scheme is 

simple. High accuracy can be obtained even with fewer number of Laplace 

parameters and coarse time step sizes.  Therefore, it needs less computational time. 

The suggested model is easily applicable to the dynamic analysis of the considered 

plates and it works effectively. Also, viscoelastic constants can be easily 

incorporated in the governing equations. It should be pointed out again that the 

suggested method is suitable for arbitrary functions of 2D-FGMs. 

Influences of various thickness profiles and the power law indices and 

different boundary conditions on free and forced vibration response of the 2D-FG 

circular and annular plates have been investigated.  It has been revealed that 

increasing the value of ߣ௥ decreases natural frequencies of the structure for the 

considered FGM model. When the plate is FG only through the thickness direction 

௥ߣ) ൌ 0), It has been concluded that an increase in the value of ߣ௭ leads to an 
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increase in the natural frequencies of the structure. It has been shown that the 

circular and annular plate with convex thickness profile (ߣ௛ ൌ 0.25) has the 

highest natural frequencies while the plate with concave thickness profile (ߣ௛ ൌ

െ	0.25) has the lowest natural frequencies among compared cases.  

It has been seen that the thickness variation profile has a highly significant 

influence on the undamped forced vibration of the considered structures. The 

results reveal that the ߣ௥ has an insignificant effect on the transient response of the 

considered structures. It has been shown that volume fraction exponent, ߣ௭,	of the 

thickness direction has a remarkable effect on the forced vibration response of the 

2D-FG circular and annular plates of variable thickness. It has been observed that 

with increasing ߣ௭  values periods and amplitudes of displacement reduce. It is 

worthwhile noting that the effect of ߣ௭  on the transient response of the 2D-FG 

plate is more noticeable than the influence of ߣ௥ and ߣ௛. 
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Appendix A 

Laplace transform of dynamic loads 

Type 
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Load Function 
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Laplace Transform 
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