Ultrastructural effects of nerve growth factor and betamethasone on nerve regeneration after experimental nerve injury


SENCAR L., GÜVEN M., ŞAKER D., SAPMAZ T., TULİ A., POLAT S.

ULTRASTRUCTURAL PATHOLOGY, cilt.44, sa.4-6, ss.436-449, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 44 Sayı: 4-6
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1080/01913123.2020.1850965
  • Dergi Adı: ULTRASTRUCTURAL PATHOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.436-449
  • Anahtar Kelimeler: PNI, NGF, betamethasone, footprint analysis, ultrastructure, FUNCTIONAL RECOVERY, NEUROTROPHIC FACTORS, AXONAL REGENERATION, PERIPHERAL-NERVES, CRUSH INJURY, RAT, EXPRESSION, THERAPY, ASSAY
  • Çukurova Üniversitesi Adresli: Evet

Özet

Peripheral nerve injuries (PNI) are an important health problem in the world. In this study, the effects of nerve growth factor (NGF) and betamethasone on nerve regeneration after sciatic nerve crush injury were examined by footprint analysis, electron microscopic, histomorphometric, and biochemical methods. Fifty Wistar rats were divided into five groups as intact control, experimental control, NGF, betamethasone, and NGF+betamethasone combined treatment groups. After the injury, betamethasone was subcutaneously injected into the lesion area of the treatment groups three times during the first day. NGF was subcutaneously injected into the lesion area of treatment groups for 14 days. Footprint analysis was made on 7, 14, 21, 28, and 35 days and after 6 weeks, tissue samples were obtained from all groups. In the experimental control group, there were severe degenerative changes in most of the axons and myelin sheaths of the nerve fibers. Moreover, an increase of MDA levels and a decrease in SOD activities were found in this group. On the other hand, malondialdehyde (MDA) levels decreased, superoxide dismutase (SOD) activities increased and significant motor functional recovery were found in the combined treatment group. The number of axons, axon diameters, and myelin thickness were significantly greater in the combined treatment group when compared with experimental control and other treatment groups. It was thought that nerve regenerative effects of NGF and anti-inflammatory and/or anti-edematous effects of betamethasone could induce functional recovery in the combined treatment group. In conclusion, combined therapy of NGF and betamethasone may be an effective approach for the treatment of PNI.